UNIVERSIDADE FEDERAL DO ACRE CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE BACHARELADO EM ENGENHARIA ELÉTRICA

GABRIEL MENDONÇA GUILHERME

ANÁLISE DOS PERFIS DE TENSÃO E FATOR DE POTÊNCIA DA REDE DE DISTRIBUIÇÃO DO CAMPUS SEDE DA UFAC ATRAVÉS DO FLUXO DE CARGA UTILIZANDO SINAPGRID

Rio Branco 2019

UNIVERSIDADE FEDERAL DO ACRE CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE BACHARELADO EM ENGENHARIA ELÉTRICA

GABRIEL MENDONÇA GUILHERME

ANÁLISE DOS PERFIS DE TENSÃO E FATOR DE POTÊNCIA DA REDE DE DISTRIBUIÇÃO DO CAMPUS SEDE DA UFAC ATRAVÉS DO FLUXO DE CARGA UTILIZANDO SINAPGRID

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia Elétrica da Universidade Federal do Acre como requisito para obtenção do título de Bacharel em Engenharia Elétrica.

Orientador: Prof. Dr. José Humberto Araújo Monteiro

"Se eu vi mais longe, foi por estar sobre ombros de gigantes." - Sir Isaac Newton

À minha avó, Maria José.

AGRADECIMENTOS

À Deus, por sempre guiar meus valores e me proporcionar as condições de estar onde me encontro atualmente.

À minha mãe, Maria da Glória, por ser um exemplo de amor e carinho, além de sempre prestar o apoio necessário e prover tudo que necessitei para alcançar cada uma de minhas conquistas, seja de forma material ou emocional.

Ao meu pai, Jairo, por ser um exemplo de trabalhador dedicado e honesto, além de me ensinar diariamente sobre os sacrifícios necessários pela família e a ser sempre o melhor que posso ser.

Aos meus irmãos, por fornecer a unidade inquebrável que me faz ter confiança no futuro legado de nossa família.

Aos meus avós e tios, por proporcionarem ótimas férias durante minha infância e juventude.

Aos meus demais familiares, pela ajuda incondicional dada a mim e aqueles importantes desde meus primeiros dias de vida.

À minha namorada, Karine, pelo apoio verdadeiro, mesmo durante minhas crises emocionais, e por proporcionar um objetivo no horizonte, me estimulando a evoluir e focar em alcançar meus sonhos.

Às minhas amigas, Taynah e Kelly, por me darem apoio e aconselhamentos, permitindo que eu amadurecesse em minha jornada.

Aos meus professores, por proporcionar o ensino que se fez necessário para que eu pudesse alcançar a etapa atual de minha vida e que carregarei ao longo de minha vida profissional.

Ao meu professor, orientador e membro pesquisador da equipe do Centro de Excelência em Energia do Acre (Ceeac), José Humberto Araújo Monteiro, pela orientação ao longo do desenvolvimento deste trabalho, bem como na decisão do tema e ajuda na coleta de dados.

À Universidade Federal do Acre, por me dar a oportunidade de ingressar e concluir um curso de ensino superior e me fornecer os recursos necessários para alavancar minha formação acadêmica. Agradeço, ademais, à possibilidade de utilizar sua rede elétrica de distribuição como objeto de estudo para o desenvolvimento deste trabalho.

À coordenação do curso de Bacharelado em Engenharia Elétrica, por fornecer o aparelho medidor de carga que foi utilizado durante o trabalho, e à secretária Luzimar de Moura Jardim, por sempre estar disposta a ajudar os alunos em quaisquer problemas que surgissem.

À empresa Sinapsis Inovação em Energia, por fornecer sua plataforma computacional SINAPgrid, com a qual este trabalho contou em grande parte para a realização de simulações e análises da rede de distribuição estudada.

Ao Centro de Excelência em Energia do Acre, e aos companheiros por lá adquiridos, pela experiência adquirida durante meu período como bolsista, pelo auxílio financeiro, momentos compartilhados e pelas amizades forjadas ao longo do mesmo.

À equipe composta por Antonio Vieira de Melo Neto, José Humberto Araújo Monteiro, Amanda Luiza Alab de Souza, Thiago Melo de Lima, Thays Santos de Oliveira, Taynara Bastos Trindade, Lucas Matheus de Sousa Lima, João Paulo de Oliveira Brilhante, Claudiane Duarte Magalhães, Luzenilda Costa da Silva e Marcos Antonio Viana Maia, por toda a cooperação ao longo dos trabalhos desenvolvidos no Ceeac. Deste período, muitos produtos obtidos serviram como base para este trabalho, dos quais vários originaram-se do esforço tanto individual quanto em conjunto de todos os citados.

Partilhando do sentimento de companheirismo com todos os citados da equipe, ainda se faz necessário destacar, dentre estes, certos indivíduos que tiveram envolvimento mais próximo com o trabalho.

Ao meu ex-chefe e Diretor Presidente do Ceeac, Eng. Antonio Vieira de Melo Neto, pela oportunidade proporcionada de ter umas das experiências mais edificantes da minha vida e pela inspiração causada por seu entusiasmo com o trabalho.

Aos meus ex-supervisores, Eng. Amanda Luiza Alab de Souza e Eng. Thiago Melo de Lima, pela orientação, coordenação e por guiar meus passos durante minha experiência no Ceeac, bem como por atenderem todas as vezes em que solicitei ajuda durante o processo do trabalho.

Ao Lucas Matheus, por me sugerir o tema do trabalho, bem como servir de apoio com ideias ou dados necessários para prosseguir no mesmo.

A Taynara Bastos, pelo apoio e de quem observei o trabalho de conclusão de curso, o qual serviu de base para o meu próprio.

Aos meus demais amigos e companheiros de classe, por proporcionar dias melhores mesmo ante as dificuldades enfrentadas no cotidiano e pelas palavras de apoio e fortalecimento que foram trocadas. O humor sempre foi uma ferramenta que me serviu como válvula de escape das pressões e frustrações do curso, e neles eu encontrei uma grande fonte disto.

RESUMO

Sistemas elétricos de potência (SEP) têm como objetivo principal fornecer a energia elétrica demandada com um nível de qualidade satisfatório. Ao longo do tempo, porém, redes elétricas sofrem modificações, alterando seus parâmetros quando comparados aos que foram verificados inicialmente. Para redes de distribuição, é importante garantir que tais alterações não venham a prejudicar o perfil de tensão da rede, o que pode acarretar em um aumento nas perdas técnicas. Embora as mudanças decorrentes de longos períodos de uso da rede possam ser previstas, ao se lidar com consumidores, é difícil antecipar transformações a longo prazo, recorrendo-se então a correções ao se verificar condições precárias no sistema. Neste contexto o trabalho busca executar uma modelagem da rede elétrica de distribuição do campus Rio Branco da Universidade Federal do Acre, recorrendo à simulação do seu fluxo de potência com o auxílio do software SINAPgrid. Desta forma, a metodologia adotada envolveu o uso de coordenadas georreferenciadas dos postes componentes da rede aérea do campus. A representação dos elementos existentes na mesma deu-se a partir de características reais verificadas nos aparelhos, tais quais valores nominais de transformadores e medições realizadas com um analisador de carga em blocos da universidade para se obter uma referência real do fator de potência médio adotado. Todo o processo de uso do programa e da realização das simulações, utilizando diferentes cenários de uso dos transformadores, é descrito, bem como duas possíveis ações a serem tomadas e quais seus possíveis impactos para a melhoria dos perfis de tensão e fator de potência do caso estudado. A primeira medida envolve o fechamento da chave seccionadora presente na rede, alterando a configuração da mesma. A segunda proposta é a de alocação do banco de capacitores para correção dos perfis de tensão e fator de potência. Foram realizadas simulações do comportamento da rede em cada um destes casos, comparando com os cenários sem modificações. Verificou-se, assim, se as mesmas representam melhorias significativas ao sistema, atestando assim sua viabilidade ou não.

Palavras-chave: SINAPgrid; Fluxo de potência; Perfil de tensão; Simulação.

ABSTRACT

The main objective of power electric systems is to provide the necessary energy at a satisfactory quality level. Power networks undergo various alterations through time, and as such its characteristics change along with it when compared to their early states. When dealing with distribution networks, it is important to reassure that those modifications do not harm the network's voltage level, which can lead to an increase in technical energy losses. Even though it is possible to foresee changes induced by long term usage, it is hard to do so when dealing with customers, which causes the need to execute adjustments when a precarious scenario is identified. In this context, this paper attempts to emulate the power network belonging to the Rio Branco campus of Federal University of Acre, simulating its power flow with the help of a software called SINAPgrid. The adopted methodology involves the use of georeferenced coordinates for each power pole belonging to the campus distribution system. The representation of each component that compose the system were made taking into account real characteristics observed on the equipment, such as nominal values for the transformers and measurements recorded with a load analyzer in different locations throughout the university, as to obtain a real reference for the average power factor verified. All the done procedures to use the SINAPgrid software and execute the simulations, testing different scenarios with varying degrees of demand from the transformers, is described along with two possible actions to be taken and their respective outcomes, as to try to improve the voltage and power factor levels in the case studied. The first one consists of closing the switch-disconnector that is kept open, changing the network configuration. The second proposal is to use capacitor banks to correct both the voltage and power factor profiles. By emulating the network behavior in each of these scenarios, and comparing them to the ones without any modifications, it is possible to verify if the changes represent actual significative improvements to the system and, as such, it is possible to test if these proposals are viable or not.

Palavras-chave: SINAPgrid; Power flow; Voltage level; Simulation.

LISTA DE FIGURAS

Figura 1 – Crescimento das cargas eletrônicas em relação ao total instalado nos EUA 21
Figura 2 – Triângulo de potências
Figura 3 – Diagrama unifilar do sistema elétrico de potência
Figura 4 – Rede radial
Figura 5 – Rede em malha
Figura 6 – Rede em malha com exploração radial
Figura 7 – Modelo equivalente π de uma linha de transmissão
Figura 8 – Modelo de um transformador em fase
Figura 9 – Circuito equivalente π de transformadores em fase
Figura 10 – Alteração no triângulo de potências devido a atuação do banco de capacitores . 40
Figura 11 – Localização dos bancos de capacitores: (a) Localização física, (b) Perfil de tensão
com carregamento pesado e (c) Perfil de tensão com carregamento leve
Figura 12 - Diagramas fasoriais para o circuito de um alimentador com fator de potência
atrasado. (a) e (c) mostram o caso sem capacitores, enquanto (b) e (d) mostram o caso com uso
de capacitores
Figura 13 - Imagem via satélite do campus sede Rio Branco e sua divisão em cinco áreas
conforme os critérios citados anteriormente
Figura 14 – Planta contendo blocos e estruturas da rede de distribuição do campus sede Rio
Branco da Ufac
Figura 15 - Diagrama unifilar da rede de distribuição do campus sede Rio Branco da Ufac
Figura 16 – Interface do SINAPgrid pronta para adição dos elementos componentes de redes
Figura 17 – Interface do SINAPgrid descrevendo diferentes tipos de redes
Figura 18 – Interface do SINAPgrid para inserção dos parâmetros de novas redes55
Figura 19 – Interface do SINAPgrid para inserção dos parâmetros das barras
Figura 20 – Ferramenta de reiniciar diagrama esquemático igual ao georreferenciado, no menu
"Editor"
Figura 21 – Interface do SINAPgrid para inserção dos parâmetros dos cabos
Figura 22 – Interface do SINAPgrid para inserção dos parâmetros dos arranjos
Figura 23 – Interface do SINAPgrid para inserção dos parâmetros dos trechos60

Figura 24 – Princípio de representação da rede de distribuição primária da Ufac com todas as
barras devidamente posicionadas e interligadas de acordo com dados georrefenciados 60
Figura 25 – Interface do SINAPgrid para inserção dos parâmetros das chaves
Figura 26 – Interface do SINAPgrid para inserção dos parâmetros dos alimentadores
Figura 27 – Interface do SINAPgrid para inserção dos parâmetros dos transformadores 62
Figura 28 – Interface do SINAPgrid para inserção (a) dos parâmetros de uma carga e (b) dos
dados de potência de uma carga65
Figura 29 - Representação da rede de distribuição primária da Ufac construída no programa
SINAPgrid com os devidos elementos alocados68
Figura 30 – Primeiro caminho adotado na análise da rede de distribuição primária da Ufac
Figura 31 – Segundo caminho adotado na análise da rede de distribuição primária da Ufac
Figura 32 – Fluxo de carga da rede de distribuição primária da Ufac em carga leve73
Figura 33 – Fluxo de carga da rede de distribuição primária da Ufac em carga média74
Figura 34 – Fluxo de carga da rede de distribuição primária da Ufac em carga pesada75
Figura 35 – Tabela do programa SINAPgrid representando as perdas técnicas em carga leve
Figura 36 – Tabela do programa SINAPgrid representando as perdas técnicas em carga média
Figura 37 – Tabela do programa SINAPgrid representando as perdas técnicas em carga pesada
Figura 38 – Fluxo de carga da rede de distribuição primária da Ufac em carga média com chave
seccionadora fechada
Figura 39 – Janela do programa SINAPgrid para alocação dos capacitores adotados e seus
respectivos parâmetros
Figura 40 – Fluxo de carga da rede de distribuição primária da Ufac em carga média com
alocação de capacitores
Figura 41 – Tabela do programa SINAPgrid representando as perdas técnicas por segmento
em carga média com alocação de capacitores100

LISTA DE TABELAS

Tabela 1 – Tensões usuais em sistemas de potência
Tabela 2 – Excerto da tabela de postes e suas respectivas coordenadas geográficas
Tabela 3 – Quantidade de transformadores de acordo com sua potência nominal
Tabela 4 – Características dos transformadores de acordo com sua potência nominal
Tabela 5 – Excerto da tabela de transformadores e seus respectivos postes alocados
Tabela 6 – Excerto da tabela de potências aparentes, ativas e reativas para carga leve
Tabela 7 – Excerto da tabela de potências aparentes, ativas e reativas para carga média 67
Tabela 8 – Excerto da tabela de potências aparentes, ativas e reativas para carga pesada 67
Tabela 9 – Descrição dos trechos componentes do primeiro caminho e suas distâncias69
Tabela 10 – Descrição dos trechos componentes do segundo caminho e suas distâncias 71
Tabela 11 – Perfis de tensão e fator de potência no primeiro caminho quanto ao uso da carga
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga
 Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga 80 Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chave
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga 80 Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chave seccionadora 86 Tabela 14 – Perfis de tensão e fator de potência no segundo caminho quanto à chave seccionadora 88 Tabela 15 – Bancos de capacitores alocados e suas respectivas barras
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga 80 Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chave seccionadora 80 Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chave seccionadora 80 Tabela 14 – Perfis de tensão e fator de potência no segundo caminho quanto à chave seccionadora 88 Tabela 15 – Bancos de capacitores alocados e suas respectivas barras 93 Tabela 16 – Perfis de tensão e fator de potência no primeiro caminho quanto ao uso de
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga 80 Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chave seccionadora 86 Tabela 14 – Perfis de tensão e fator de potência no segundo caminho quanto à chave seccionadora 88 Tabela 15 – Bancos de capacitores alocados e suas respectivas barras 93 Tabela 16 – Perfis de tensão e fator de potência no primeiro caminho quanto ao uso de capacitores
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga 80 Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chave 86 Tabela 14 – Perfis de tensão e fator de potência no segundo caminho quanto à chave 86 Tabela 14 – Perfis de tensão e fator de potência no segundo caminho quanto à chave 86 Tabela 15 – Bancos de capacitores alocados e suas respectivas barras
Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga

LISTA DE GRÁFICOS

Gráfico 1 – Perfil de tensão do primeiro caminho quanto ao uso da carga
Gráfico 2 – Perfil de fator de potência do primeiro caminho quanto ao uso da carga78
Gráfico 3 – Perfil de tensão do segundo caminho quanto ao uso da carga
Gráfico 4 – Perfil de fator de potência do segundo caminho quanto ao uso da carga
Gráfico 5 – Perfil de tensão do primeiro caminho quanto à chave seccionadora
Gráfico 6 – Perfil de fator de potência do primeiro caminho quanto à chave seccionadora 88
Gráfico 7 – Perfil de tensão do segundo caminho quanto à chave seccionadora
Gráfico 8 – Perfil de fator de potência do segundo caminho quanto à chave seccionadora 90
Gráfico 9 – Perfil de tensão do primeiro caminho quanto ao uso de capacitores95
Gráfico 10 - Perfil de fator de potência do primeiro caminho quanto ao uso de capacitores
Gráfico 11 – Perfil de tensão do segundo caminho quanto ao uso de capacitores
Gráfico 12 - Perfil de fator de potência do segundo caminho quanto ao uso de capacitores

SUMÁRIO

1 INTRODUÇÃO	15
1.1 Justificativa	17
1.2 Motivação	17
1.3 Objetivos	
1.3.1 Objetivo Geral	
1.3.2 Objetivos Específicos	
1.4 Estrutura do trabalho	
2 CONCEITOS ACERCA DE POTÊNCIA EM CORRENTE ALTERNADA.	
2.1 Potência ativa e reativa	
2.1.1 Medição da potência ativa e reativa	21
2.2 Fator de potência	
2.2.1 Consequências de um baixo fator de potência	
2.2.2 Correção do fator de potência	24
3 FLUXO DE POTÊNCIA EM REDES DE DISTRIBUIÇÃO	25
3.1 Redes de distribuição	26
3.2 Configurações de rede	27
3.3 Fluxo de potência em sistemas de distribuição	
3.3.1 Formulação básica	
3.3.2 Modelagem dos elementos da rede	
3.3.2.1 Linhas de transmissão	
3.3.2.2 Transformadores em fase	
3.3.3 Expressões gerais dos fluxos de potência	35
4 MELHORIA DO PERFIL DE TENSÃO E REDUÇÃO DE PERDAS TÉCN	NICAS EM
REDES DE DISTRIBUIÇÃO	
4.1 Qualidade de energia	
4.2 Bancos de capacitores	39
4.2.1 Dimensionamento de bancos de capacitores	
4.2.2 Alocação de bancos de capacitores	
4.2.3 Correção do perfil de tensão e redução de perdas com o uso de capacitores	
4.2.4 Consequências advindasdo uso de capacitores	44
4.3 Reconfiguração de rede	

5 MODELAGEM DA REDE DE DISTRIBUIÇÃO DA UFAC NO SINAPGRID	46
5.1 O campus Rio Branco da Universidade Federal do Acre	
5.2 O Centro de Excelência em Energia do Acre	
5.3 Topologia da rede elétrica de distribuição do campus Rio Branco da Univ	ersidade
Federal do Acre	50
5.4 SINAPgrid	53
5.5 Modelagem dos elementos da rede	54
5.5.1 Configuração da rede	55
5.5.2 Modelagem das barras	
5.5.3 Configuração dos cabos e arranjos	58
5.5.4 Modelagem dos trechos	59
5.5.5 Modelagem da chave	61
5.5.6 Modelagem do alimentador	61
5.5.7 Modelagem dos transformadores	62
5.5.8 Modelagem das cargas	65
6 RESULTADOS	68
6.1 Carga leve	73
6.2 Carga média	74
6.3 Carga pesada	75
6.4 Comparação entre as simulações realizadas para diferentes níveis de carga	75
6.4.1 Perfis de tensão e de fator de potência no primeiro trecho	76
6.4.2 Perfis de tensão e de fator de potência no segundo trecho	79
6.4.3 Perdas técnicas por segmento	82
6.5 Simulação de alterações na rede	
6.5.1 Cenário com chave seccionadora fechada	85
6.5.1 Cenário com alocação de capacitores	91
7 CONSIDERAÇÕES FINAIS E CONCLUSÃO	101
7.1 Propostas de trabalhos futuros	103
BIBLIOGRAFIA	104
ANEXOS	107
ANEXO A – Tabela com coordenadas geográficas dos postes	108
ANEXO B – Tabela de transformadores e seus respectivos postes	113
ANEXO C – Tabelas de potências dos transformadores e cargas para diferentes i	níveis de
uso	115

1 INTRODUÇÃO

Cada vez mais demandada, a energia elétrica e os aparelhos movidos por ela se tornaram acessíveis pela população ao longo do tempo. Quanto mais cidades recebiam energia gerada em pontos distantes, mais se tornaram necessárias melhorias no sistema elétrico para suprir todos os consumidores e indústrias instaladas. Para abastecer a crescente necessidade dos consumidores, os setores de geração e transmissão se viram diante de duas opções: criar mais usinas ou reduzir a perda de energia em razão de diversos fatores, melhorando a eficiência do que já é produzido. Assim, a melhoria no processo de fornecimento de eletricidade se tornou, além de uma questão de quantidade, também um caso de refinamento e eficiência do produto (CARVALHO, 2013).

Para tal, sempre são feitos estudos referentes à qualidade de energia, uma espécie de avaliação de certos parâmetros envolvendo suas etapas de geração, transmissão e distribuição. Tais indicadores são propostos e analisados pela agência reguladora Aneel, para garantir que o consumidor receba um produto considerado de qualidade, que apresente riscos mínimos para seus aparelhos e maquinários conectados à rede elétrica (ANEEL, 2017).

Um dos indicadores de qualidade de energia comumente analisado é o fator de potência da rede, que mostra o quanto da potência total recebida é utilizada em trabalho útil. Diferentes equipamentos elétricos, como motores e transformadores, exigem a presença tanto de potência ativa como reativa. Enquanto a energia ativa é responsável pela realização do trabalho em si, a energia reativa é necessária para a manutenção dos campos elétricos e magnéticos nas bobinas dos aparelhos. O fator de potência, então, indica a quantia de potência ativa em relação potência aparente produzida (FRAGOAS, 2008).

Portanto, buscando reduzir perdas causadas por excesso de reativos, busca-se um meio de reduzir seus impactos na rede, mantendo em mente a sua presença e importância, tais como em motores e outros maquinários industriais.

É importante frisar o impacto que perdas possam representar em uma rede não eficiente. Segundo Pomilio e Deckmann (2018), há mais de 10 anos foram realizadas estimativas relativas à indústria manufatureira americana e suas perdas, resultando em prejuízos na ordem de 10 bilhões de dólares relacionados a interrupções de processos. Na Europa, por sua vez, os distúrbios associados na rede chegavam a custar 1,5% do PIB total.

Quanto ao desperdício de energia elétrica, a potência reativa presente em um sistema contribui de diferentes formas, seja gerando perdas técnicas devido ao aquecimento e queda

tensão ou exigindo condutores e transformadores mais robustos para suportá-la (FRAGOAS, 2008).

Um método comum de compensação de reativos no fluxo da rede é através do uso de bancos de capacitores. Esses, por serem associações de elementos capacitivos, são capazes de funcionarem como uma fonte de reativos, mantendo a circulação desse tipo de energia apenas onde é realmente necessária. Tais bancos, entretanto, devem ser dimensionados para situações específicas a fim de abranger cada caso de modo satisfatório (FRAGOAS, 2008).

Os bancos de capacitores também têm a capacidade de, associados ou não a reguladores de tensão, corrigir certos problemas no perfil de tensão de uma rede de distribuição. Para tal, se faz necessário um estudo apontando alocações dos mesmos para uma situação ótima.

Bancos de capacitores serão abordados mais detalhadamente ao longo do trabalho, porém é necessário estar ciente que estes podem assumir diferentes características conforme se mostre necessário através do uso de diferentes tipos, tamanhos, quantidades ou alocações na rede.

Para analisar a relação entre a quantia de potência ativa e reativa, existe um parâmetro chamado fator de potência. Quanto mais próximo do valor unitário, maior é a quantia de ativos em relação aos reativos, e mais eficiente é o uso da potência total gerada. Agências reguladoras de vários países, a fim de desestimular o envio e uso de energia elétrica de baixa qualidade, estipulam um valor mínimo para o fator de potência, garantindo que o fluxo de potência reativa se mantenha baixo e reduzindo as perdas técnicas. No Brasil, o valor estipulado pela Aneel para o fator de potência mínimo das unidades consumidoras do grupo A é 0,92, com a aplicação de multas em situações onde sejam aferidos valores menores (ANEEL, 2000).

Tendo foco na etapa de distribuição, este trabalho busca apresentar uma análise do perfil de tensão da rede elétrica do campus sede Rio Branco da Universidade Federal do Acre, a fim de que seja feito a modelagem da mesma. Tal etapa contará com o auxílio de simulações e do seu respectivo fluxo de potência. Serão identificadas, por fim, os possíveis defeitos na rede elétrica de distribuição e levantadas algumas possíveis soluções para os mesmos. As medidas sugeridas virão a ser reproduzidas em computador, sendo feita uma análise de suas respectivas viabilidades.

Também serão apresentadas definições que descrevem uma boa qualidade de energia elétrica na rede, de forma a destacar problemas apresentados pela Ufac, ou mesmo associados ao método de uso de bancos de capacitores para reajuste do fator de potência e correção do perfil de tensão. Uma vez em posse de tais informações, será possível propor mudanças que reduzam, solucionem ou amenizem tais distúrbios.

Os modelos que servirão de análise serão construídos principalmente com o auxílio do software SINAPgrid, o qual será capaz de reproduzir, dadas as informações corretas a partir do que será levantado ao longo do trabalho, o fluxo de potência da rede estudada. Embora o mesmo possa ser calculado sem a ajuda de programas, seu uso servirá para a obtenção de um produto mais confiável, que permitirá não apenas averiguar a situação atual da distribuição de energia elétrica no campus, como também propor e simular cenários com alterações propostas.

Assim, a plataforma escolhida se torna uma parte integrante do processo de produção deste trabalho, com maior síntese e rapidez na hora de representar um fluxo a ser analisado.

1.1 Justificativa

O trabalho justifica-se como acadêmico por colocar em prática conhecimentos adquiridos ao longo do curso, além de propor explorá-los de forma a constituir um estudo ainda não realizado para o caso específico das dependências do campus Rio Branco da Universidade Federal do Acre. No quesito profissional, se mostra válido pela proposição de melhorias no uso da energia elétrica contratada, aprimorando tecnicamente a rede elétrica de distribuição. Também mostra a exploração da aplicação de uma plataforma destinada ao engenheiro eletricista em possíveis futuras análises, fornecendo uma metodologia válida a ser seguida. Por fim, busca-se que este material venha a inspirar e auxiliar outros estudantes, profissionais ou leigos que venham a querer executar trabalho similar. Todas as mudanças propostas e analisadas buscam, com o uso do SINAPgrid, possuir um maior embasamento que justifique sua viabilidade ou a ausência da mesma.

1.2 Motivação

Com a análise do perfil de tensão da rede de distribuição da Ufac, pretende-se apontar os problemas atualmente presentes e buscar corrigi-los, garantindo a segurança da rede elétrica e realizando uma renovação da mesma. Além de tais aspectos, é importante destacar que, ao buscar corrigir o fator de potência é esperado obter uma economia financeira com a redução de ocasionais multas que podem estar sendo pagas atualmente sem o ajuste da rede. Por fim, há a motivação técnica de renovação da rede elétrica, com a redução do fluxo de potência reativa, uma vez que seus excessos se mostram prejudiciais a uma rede elétrica.

1.3 Objetivos

A seguir são descritos os objetivos principais que se pretende alcançar com o trabalho apresentado.

1.3.1 Objetivo geral

Analisar o perfil de tensão da rede de distribuição do campus Rio Branco da Universidade Federal do Acre através do seu fluxo de carga utilizando a plataforma SINAPgrid e propor possíveis melhorias a serem adotadas para a mesma.

1.3.2 Objetivos específicos

A fim de alcançar o objetivo principal, são propostos os seguintes objetivos específicos:

• Descrever conceitos de energia ativa, reativa, aparente e fator de potência, bem como suas correlações;

 Descrever o processo do dimensionamento e alocação de bancos de capacitores para correção do perfil de tensão e melhoria do fator de potência da rede elétrica da Ufac e as características levadas em conta;

• Apresentar, de maneira geral, os fatores que determinam a qualidade da energia elétrica;

• Realizar simulações a partir de dados obtidos da rede elétrica de distribuição do campus Rio Branco da Ufac e identificar possíveis problemas presentes em sua parte principal;

• Propor e analisar alterações para melhorias das características da rede em questão;

 Verificar e comparar as simulações realizadas antes e depois das mudanças propostas, definindo então um curso de ações a ser tomado para melhoria do perfil de tensão da rede estudada do campus.

1.4 Estrutura do trabalho

Para o trabalho ser desenvolvido em uma sequência lógica, adota-se a estrutura descrita. No segundo capítulo é apresentado um estudo sobre temas essenciais para expor a necessidade da correção do perfil de tensão e fator de potência, com possibilidade do uso de bancos capacitivos. Assim, é realizado um embasamento teórico quanto às potências ativa, reativa e aparente e fator de potência.

O terceiro capítulo apresenta o levantamento relativo às redes de distribuição de energia elétrica e como estas podem ter diferentes configurações, cada qual com suas próprias características. Por fim, o capítulo aborda ainda a representação de redes de distribuição através de fluxos de potência.

Para o quarto capítulo, há uma exposição acerca de qualidade de energia, bancos de capacitores e reconfiguração de redes. Busca-se assim verificar meios de melhorar o perfil de tensão e reduzir as perdas técnicas em sistemas de distribuição, bem como a importância disto. Com o conteúdo exposto neste capítulo, poderão ser estipuladas medidas que representem aprimoramentos para o comportamento da rede de distribuição do campus Rio Branco da Ufac.

No quinto capítulo, uma vez concluído o embasamento teórico necessário, foi trabalhado o estudo de caso envolvendo a distribuição elétrica da Ufac. De tal forma, há a exposição de sua situação atual e como o projeto de pesquisa e desenvolvimento promovido pelo Centro de Excelência em Energia do Acre (Ceeac) auxiliou no levantamento de dados referentes a ela. No final, será explicada a modelagem dos elementos da rede com o auxílio do software SINAPgrid.

O sexto capítulo, por fim, demonstra as simulações realizadas em três casos com diferentes níveis de carga, contando com comparações entre os cenários e análises do comportamento apresentado pela rede. Em seguida, são mostradas averiguações de possíveis mudanças escolhidas e se as mesmas representam melhorias para a distribuição do campus. Para isto serão desenvolvidas duas simulações estudando duas propostas diferentes, e a partir disto serão obtidas conclusões acerca das mesmas. Na primeira, é proposta a análise do fechamento de uma chave seccionadora, alterando a configuração da rede elétrica de distribuição, ao passo que na segunda é verificado o modo com que a alocação de bancos de capacitores afeta uma rede de distribuição. O capítulo é concluído examinando se as alterações propostas se provaram benéficas para a rede a partir das comparações dos resultados obtidos.

As conclusões, por fim, explicitam o que foi obtido a partir de todo este processo, bem como citam métodos de levar o trabalho à frente em áreas relacionadas, propondo futuros estudos que possam vir a complementar este.

2 CONCEITOS ACERCA DE POTÊNCIA EM CORRENTE ALTERNADA

2.1 Potência ativa e reativa

Em sistemas de corrente alternada com cargas lineares é possível notar que tanto a corrente quanto a tensão possuirão mesma fase. Desta forma, a corrente muda instantaneamente sua polaridade ao passar do semi-ciclo positivo para o negativo e vice-versa. Neste caso, é necessário lidar apenas com potência ativa, também chamada de potência real, definida como aquela capaz de produzir trabalho (FRAGOAS, 2008).

Entretanto, quando se trabalha com elementos reativos, como capacitores, condensadores ou indutores, tem-se um atraso ou adiantamento de fase entre a corrente e a tensão devido ao armazenamento de energia nestes elementos. Neste caso, há o retorno da energia armazenada para a fonte, gerando assim o conceito básico de potência reativa, descrita como a medida de energia que regressam desta forma a cada ciclo de corrente alternada (FRAGOAS, 2008).

Por fim, há a potência aparente, sendo compreendida como o produto entre a corrente e a tensão do circuito, conforme descrito na Equação 1. Em circuitos não lineares, que possuem elementos reativos, esta potência é superior à ativa, em que este acréscimo se deve a presença de tais reativos. Quanto maiores forem estes reativos, maior é a corrente do circuito para realizar uma determinada quantia de trabalho, sendo necessária então uma maior geração de potência a fim de produzir a mesma quantia útil de um equivalente linear (FRAGOAS, 2008).

$$S = V_{RMS} \times I_{RMS} \qquad (1)$$

Onde S é a potência aparente, V_{RMS} e I_{RMS} são, respectivamente os valores eficazes de tensão e corrente.

É necessário destacar que, mesmo que não produza trabalho útil, a energia reativa é necessária para o funcionamento de equipamentos como transformadores, motores e cargas eletrônicas (REIS e KIKUCHI, 2015).

O avanço da tecnologia com o tempo foi fazendo com que cada vez mais cargas eletrônicas fossem instaladas, aumentando assim o uso de cargas não lineares, elevando não apenas os reativos no sistema elétrico, como também injetando harmônicos na mesma (DUQUE, 2013).

A Figura 1 apresenta o crescimento das cargas eletrônicas em relação ao total instalado, nos Estados Unidos, desde a década de 1960 ao ano 2000

Figura 1 – Crescimento das cargas eletrônicas em relação ao total instalado nos EUA.

Desta forma, a existência da mesma é indispensável, porém ao se buscar um consumo e geração eficientes, os reativos devem ser reduzidos o máximo possível.

2.1.1 Medição da potência ativa e reativa

As três potências descritas anteriormente podem ser correlacionadas em uma representação geométrica para melhor entendimento, chamado de triângulo de potências. Neste modelo, utiliza-se um triângulo retângulo com os catetos representando as potências ativa e reativa, enquanto a potência aparente é a hipotenusa (REIS e KIKUCHI, 2015). Este triângulo é dado na Figura 2.

Fonte: (DUQUE, 2013)

Fonte: (REIS e KIKUCHI, 2015).

Tem-se então que a potência aparente é encontrada utilizando a Equação 2.

$$S = \sqrt{P^2 + Q^2} \tag{2}$$

Considerando a relação entre estas medidas, tem-se o cosseno do ângulo formado pelas mesmas, que é chamado de fator de potência.

2.2 Fator de potência

A relação entre a potência gerada e a potência ativa é chamado de fator de potência. É descrito como um valor adimensional variante de 0 a 1, onde 0 descreve uma potência puramente reativa, ao passo em que 1 indica potência puramente real (FRAGOAS, 2008). Desta forma, e de acordo com o triângulo de potências, a relação entre a parte ativa e a aparente funciona como o cosseno do ângulo formado entre as mesmas (ϕ), podendo ser descrito pela Equação 3, conforme obtido de Fragoas (2008).

$$FP = \cos\varphi = \frac{P}{S} = \frac{\frac{1}{T} \int v_i(t) \cdot i_i(t) \cdot dt}{V_{RMS} \cdot I_{RMS}}$$
(3)

Onde FP é fator de potência, P, S, V_{RMS} e I_{RMS} são, tal qual nas equações (1) e (2), nesta exata ordem, as potências ativa e aparente, tensão RMS e corrente RMS. Por fim, T é o período e v_i e i_i são, respectivamente, os valores instantâneos de tensão e corrente do circuito.

Dado que o fator de potência demonstra quanto da energia gerada, normalmente dada em quilovolt-ampère (kVA), é utilizada para trabalho útil na forma de quilowatts (kW), podese então percebê-lo como um parâmetro de eficiência de sistemas elétricos. Assim, quanto maior o valor do FP, menos reativos estão presentes, indicando uma baixa possibilidade de excessos de reativos que comprometeriam a qualidade de energia elétrica (REIS e KIKUCHI, 2015).

De forma análoga, um baixo FP indica um possível excesso de reativos. O valor de $FP \ge 0.92$ foi estipulado conforme a Resolução Aneel nº 456, de 29 de novembro de 2000, para se estabelecer um máximo aceitável de reativos na rede. Instalações que não estejam dentro deste parâmetro, possuindo fator de potência abaixo do estabelecido pela Aneel, são multadas. Desta forma, tal resolução estimula o cumprimento do Decreto nº 479, de 20 de março de 1992, onde se consta que as concessionárias e serviços de energia elétrica, bem como consumidores, devem buscar manter o fator de potência do sistema elétrico o mais próximo possível de 1 (BRASIL, 1992; ANEEL, 2000).

Valores abaixo do referencial colocado implicam uma grande injeção de reativos na rede, o que é prejudicial para as concessionárias, que findam suprindo ainda mais potência para compensar tal situação (REIS e KIKUCHI, 2015).

2.2.1 Consequências de um baixo fator de potência

Um baixo fator de potência indica uma elevada quantia de reativos, que podem implicar em complicações na rede, como, por exemplo, elevar a corrente total que circula no setor de distribuição, causando distúrbios tanto pelo lado da concessionária quanto dos consumidores. Dentre os problemas decorrentes disto, existe o aumento de perdas devido ao Efeito Joule ao trabalhar com correntes elevadas, tanto em equipamentos elétricos como na transmissão da energia elétrica (REIS e KIKUCHI, 2015).

Ainda devido ao aumento da corrente, o excesso de reativos acarreta em quedas de tensão, chegando a causar possíveis interrupções no fornecimento de produtos, principalmente em horários em que se notam picos de demanda energética (REIS e KIKUCHI, 2015).

O excesso de reativos indicados por um baixo fator de potência, porém, deixa subentendido não apenas o aumento da corrente do sistema, como também um acréscimo de potência aparente acerca do qual os equipamentos instalados na rede devem ser dimensionados. Desta forma, quanto maior a potência total nas instalações, mais robustos devem ser elementos como cabos de transmissão e transformadores. Causa-se assim, consequentemente, um prejuízo financeiro na forma não só de perdas técnicas, como também de investimentos em equipamentos com a finalidade de atender tais demandas mais elevadas (REIS e KIKUCHI, 2015).

2.2.2 Correção do fator de potência

Ao verificar-se um baixo fator de potência, em primeira instância busca-se descobrir a causa desta ocorrência. Para correção de elevado uso de energia reativa, é recomendável racionalizar o uso de equipamentos elétricos instalados, desligando motores operando a vazio ou fazendo redimensionamento de equipamentos, bem como a substituição de motores superdimensionados por outros de menor potência. Há também a verificação da distribuição de carga entre os circuitos de fase, onde pode haver um desequilíbrio significativo entre os mesmos (REIS e KIKUCHI, 2015).

Outro meio de se corrigir o fator de potência, comumente utilizado na etapa de distribuição, é através da instalação de bancos de capacitores. Estes bancos, compostos por unidades capacitivas associadas, contrabalanceiam o atraso apresentado pela corrente em relação à tensão, fornecendo uma corrente adiantada em relação a esta tensão. Desta forma, obtém-se uma corrente total mais próxima de sua contraparte resistiva, fazendo com que o fator de potência se aproxime da unidade, reproduzindo um comportamento semelhante ao de um circuito resistivo (SENAI e CST, 1996).

Redimensionamentos de máquinas, transformadores e circuitos da rede exigem análises mais detalhadas dos elementos envolvidos, enquanto a compensação de reativos pode ser realizada através da verificação de consumo da rede e verificação do FP apresentado. Assim, o uso de bancos de capacitores representa uma medida não dispendiosa, requisitando menores investimentos em manutenção e promovendo uma solução satisfatória para o problema de excesso de reativos.

3 FLUXO DE POTÊNCIA EM REDES DE DISTRIBUIÇÃO

Sistemas elétricos de potência têm como objetivo principal fornecer a energia elétrica demandada por seus diversos clientes com um nível de qualidade satisfatório. A eletricidade deve ser transformada a partir de outra fonte, tais quais térmicas, mecânicas, hidráulicas, dentre outras, e então transmitida para que chegue aos diferentes centros consumidores (KAGAN et al., 2005).

Abaixo são descritas, no diagrama unifilar da Figura 3, as etapas componentes do sistema elétrico e como estas se conectam entre si.

Figura 3 – Diagrama unifilar do sistema elétrico de potência.

Fonte: Adaptado de Kagan et al. (2005).

É importante não apenas garantir uma geração elétrica de qualidade, como também que esta se mantenha em um bom nível no decorrer de suas diferentes etapas de distribuição a todo momento, suprindo a demanda necessária. Logo, faz-se necessário o estudo de qualidade de energia e possíveis distúrbios existentes, principalmente na etapa de distribuição em si. Isto se deve ao fato de que é neste setor do sistema elétrico que estão concentrados os principais centros consumidores, com a conexão de diferentes elementos da rede (KAGAN et al., 2005; DUQUE, 2013).

3.1 Redes de distribuição

As redes de distribuição são compostas basicamente pelas linhas de distribuição e subestações abaixadoras, onde a tensão é reduzida para níveis utilizáveis por múltiplos tipos de consumidores. Compreende, no diagrama unifilar apresentado anteriormente, desde a sessão de subtransmissão à distribuição secundária (DUQUE, 2013).

No estágio de subtransmissão, são supridos consumidores em alta tensão, normalmente grandes instalações industriais, estações de tratamento e bombeamento de água, utilizando tensões nominais de 69 kV ou 138 kV (KAGAN et al., 2005).

A etapa seguinte é a de distribuição primária, alimentada pelas subestações de distribuição. Operam normalmente de forma radial, havendo a possibilidade de transferências de blocos entre os circuitos. Entre seus consumidores normalmente encontram-se indústrias de médio porte, centros comerciais, instalações de iluminação pública ou mesmo instituições públicas (KAGAN et al., 2005).

No caso da Ufac, embora muitas partes sejam alimentadas em baixa tensão, normalmente supridas pela distribuição secundária, ainda há equipamentos no campus que necessitam de média tensão, sendo esta a fornecida pela concessionária. Assim, é considerado que no caso do campus estudado se trabalha com distribuição primária de média tensão de valor nominal 13,8 kV.

Por fim, há a distribuição secundária, caracterizada por consumidores de baixa tensão, tal qual residências, pequenos comércios e indústrias de menor porte. As redes deste tipo são alimentadas diretamente de estações transformadoras, localizadas próximas a redes de média tensão, tal qual os postes em casos de redes aéreas (KAGAN et al., 2005).

No Brasil, os valores adotados para alimentação de baixa tensão são 220/127 V ou 380/220 V, dependendo da região em questão (KAGAN et al., 2005).

É possível notar uma ordem hierárquica nas redes de distribuição, onde, conforme se avança no diagrama unifilar descrito anteriormente, se reduz cada vez mais a tensão utilizada ao passo em que o estágio anterior é o que supre a potência para a próxima etapa (KAGAN et al., 2005).

A Tabela 1 mostra os valores nominais para cada tipo de distribuição em alta, média e baixa tensão.

Tensão (kV)		Compo do oplicação	Área do sistema de
Padronizada	Existente	Campo de aplicação	potência
0,220/0,127	0,110	Distribuição secundária	
0,380/0,220	0,230/0,115	(Baixa tensão)	
13,8	11,9	Distribuição primária (Média	
34,5	22,5	tensão)	Distribuição
34,5			
69,0	88,0	Subtransmissão (Alta tensão)	
138,0			
138,0			
230,0	440,0	Transmissão	Transmissão
345,0	750,0	Tansinissao	1 runsmissao
500,0			

Tabela 1 – Tensões usuais em sistemas de potência.

Fonte: (KAGAN et al., 2005)

3.2 Configurações de rede

As redes de distribuição podem assumir diferentes estruturas topológicas a fim de suprir a demanda de uma determinada região levando em conta suas características. As diferentes configurações apresentam distintos níveis de qualidade ao se lidar com possíveis falhas, bem como custos envolvidos. Assim, é necessário avaliar quais os prós e contras das diferentes composições para se estabelecer qual é mais adequada para cada cenário (SANTOS, 2013).

No caso de redes aéreas (compostas por cabos suspensos através de postes e outros possíveis elementos de sustentação), as estruturas podem ser em malhas, radiais ou em malha com exploração radial, também conhecida como configuração em anel (SANTOS, 2013).

A rede radial se trata de uma fiação na qual de um único barramento são alimentados múltiplos outros, sem retorno ao original. Assim, a disposição assume forma ramificada, necessitando de menor investimento para levar a energia da produção aos consumidores. Entretanto, uma falha em um ramo que necessite o desligamento de um ponto da rede implica em um desligamento de todos os elementos à jusante do mesmo. Por tais fatores, a forma radial é comumente utilizada em áreas de baixa densidade de consumidores, tais como zonas rurais (COELHO, 2012; SANTOS, 2013).

Fonte: (SANTOS, 2013)

Na configuração em malha, a potência chega aos mesmos barramentos a partir de múltiplas fiações. Assim, caso ocorra uma falha em um caminho, a energia pode chegar a partir de outro trajeto, representando maior segurança e confiabilidade à rede. Devido a isto, entretanto, também se deve o fato de ser o modelo com maior custo de investimentos necessários (SANTOS, 2013).

Figura 5 – Rede em malha

Fonte: (SANTOS, 2013)

O modelo de malha com exploração radial é caracterizado por se assemelhar ao modelo radial, com a adição de um cabo extra entre barramentos, similar ao que ocorre nos casos de malha. Este cabo extra normalmente permanece aberto até que a reposição de potência em algum dos caminhos conectados se faça necessária, embora existam casos que este trecho possa permanecer fechado. (SANTOS, 2013)

Assim, por definição esta é chamada de configuração em anel aberto. Na prática, as características deste modelo são as mesmas do radial, com a diferença de uma menor vulnerabilidade a falhas devido ao cabo adicionado. Tendo a possibilidade de ser manobrada,

em casos de falhas não se faz necessário o desligamento de toda a rede além do ponto de falta. (SANTOS, 2013)

Figura 6 – Rede em malha com exploração radial.

Fonte: (SANTOS, 2013)

3.3 Fluxo de potência em sistemas de distribuição

O estudo do fluxo de potência, ou fluxo de carga, de uma rede permite executar uma análise da mesma através de um circuito que a represente (obtido a partir de sua respectiva topologia), buscando estratégias de operação para a mesma. Das informações que um cálculo de fluxo de potência pode obter, destacam-se o módulo e fase das tensões nas barras, bem como as potências ativa e reativa (GRAINGER e STEVENSON, 1994; KAGAN et al., 2005).

Tal análise permite ainda realizar diferentes averiguações, tais quais estabilidade, carregamento das linhas, cálculo de perdas e possíveis desequilíbrios apresentados. Pode também servir para planejamento de redes, operações ou mesmo alocações de novos elementos (SAADAT et al., 1999; KAGAN et al., 2005).

Os cálculos são feitos aplicando a lei das correntes de Kirchhoff nos nós do circuito averiguado. Considera-se que a potência que entra em um nó é igual à soma das potências que saem deste nó para os diferentes elementos da rede conectados a este. Levando em conta que todas as cargas subsequentes a um nó são concentradas no mesmo, é possível determinar a tensão iterativamente levando em conta a tensão do nó anterior, a corrente e as perdas nas linhas de transmissão. Este cálculo é realizado para todos os nós e linhas da rede, permitindo calcular perdas na transmissão e se os níveis de tensão atendem aos padrões tecnicamente corretos (MONTICELLI, 1983; PEREIRA, 1993; KAGAN et al., 2005).

O fluxo de potência se mostra como uma imagem estática do comportamento da rede em dado momento, e para tal deve ser utilizado apenas em condições que apresentem variações lentas na mesma, permitindo ignorar efeitos transitórios. Os elementos da rede são classificados em equipamentos de uma barra, tais quais geradores, capacitores e cargas, e equipamentos de ligação entre duas barras, como linhas de transmissão e transformadores (MONTICELLI, 1983).

3.3.1 Formulação básica

O problema do fluxo de carga pode ser solucionado com um conjunto de equações e inequações algébricas não-lineares. Estas correspondem não apenas às leis de Kirchhoff, mas também às restrições operacionais do sistema e componentes da mesma (MONTICELLI, 1983).

Em sua forma mais simples, a formulação envolve associar quatro variáveis a cada barra: magnitude de tensão nodal (V), ângulo da tensão nodal (θ), geração líquida de potência ativa (P) e injeção líquida de potência reativa (Q). A geração líquida de potência corresponde à geração total menos a carga (MONTICELLI, 1983).

Normalmente em um problema, cada barra tem duas destas variáveis dadas e duas permanecem incógnitas, que virão a ser calculadas. Dependendo dos dados conhecidos, é possível classificar a barra em tipos. Os exemplos mais frequentes e importantes são barras PQ (P e Q são dados, V e θ serão calculados), PV (P e V conhecidos, calcula-se Q e θ) e V θ , ou barra de referência (onde resta calcular as potências P e Q). As do modelo PQ e PV são comumente utilizadas para representar, respectivamente, barras de carga e barras de geração. A referência serve para indicar a referência angular do sistema e fechar o balanço de potência do mesmo (MONTICELLI, 1983).

As cargas são consideradas como injeção de potência constante nas barras. O conjunto de equações que formulam o problema do fluxo de potência é formado por duas equações para cada barra, baseado no que a Primeira Lei de Kirchhoff diz sobre a quantia de potência que entra em uma barra ser igual ao quanto de potência sai da barra. Considera-se que a injeção de potência em uma barra é positiva se entra nela (geração) e negativa se sai (cargas) (MONTICELLI, 1983).

O conjunto de equações é dado nas Equações 4 e 5:

$$P_k = \sum_{m \in \Omega_k} P_{km}(V_k, V_m, \theta_k, \theta_m)$$
(4)

$$Q_k + Q_k^{sh}(V_k) = \sum_{m \in \Omega_k} Q_{km}(V_k, V_m, \theta_k, \theta_m)$$
(5)

Onde:

- k = 1, 2, ..., n, onde n é o número de barras da rede;
- $\Omega_k \acute{e}$ o conjunto de barras conectadas à barra k;
- V_k e V_m são as magnitudes de tensão das barras terminais em um ramo que vá da barra k à barra m;
- θ_k e θ_m são os ângulos de tensão das barras terminais em um ramo que vá da barra k à barra m;
- Pkm é o fluxo de potência ativa no trecho k m;
- Qkm é o fluxo de potência reativa no trecho k m;
- Q_k^{sh} é o componente de injeção de reativos devido ao elemento *shunt* da barra k, dado por Q_k^{sh} = b_k^{sh} · V_k² (onde b_k^{sh} é a susceptância *shunt* ligada à barra k).

As inequações que fazem parte do conjunto são formadas pelas restrições nas magnitudes das tensões nodais em barras PQ e os limites de injeções de potência reativa nas barras PV, dadas nas Equações 6 e 7.

$$V_k^{min} \le V_k \le V_k^{max} \quad (6)$$
$$Q_k^{min} \le Q_k \le Q_k^{max} \quad (7)$$

3.3.2 Modelagem de elementos da rede

Para o cálculo do fluxo de potência, é necessário a modelagem dos elementos de conexão. Nesta seção serão abordados os modelos equivalentes e parâmetros envolvidos para linhas de transmissão e transformadores em fase (MONTICELLI, 1983). Os transformadores defasadores não virão a ser abordados, visto que estes não estão presentes na rede de distribuição da Ufac que será analisada no estudo de caso.

A linha de transmissão pode ser representada de maneira simples pelo modelo equivalente π dado abaixo.

Figura 7 – Modelo equivalente π de uma linha de transmissão.

Fonte: (MONTICELLI, 1983).

Este circuito equivalente é obtido com os três parâmetros principais: a resistência série $r_{km} (\geq 0)$, a reatância série $x_{km} (\geq 0$, indutivo) e a susceptância shunt $b_{km}^{sh} (\geq 0$, capacitivo), com a impedância da componente série sendo dada na Equação 8 (MONTICELLI, 1983).

$$z_{km} = r_{km} + jx_{km} \quad (8)$$

Da mesma forma, a admitância série é dada pela Equação 9, enquanto suas componentes são dadas na Equação 10.

$$y_{km} = g_{km} + jb_{km} = z_{km}^{-1} = \frac{r_{km}}{r_{km}^2 + x_{km}^2} - j\frac{x_{km}}{r_{km}^2 + x_{km}^2} (9)$$
$$g_{km} = \frac{r_{km}}{r_{km}^2 + x_{km}^2}; \ b_{km} = -\frac{x_{km}}{r_{km}^2 + x_{km}^2} (10)$$

Onde $g_{km} (\geq 0)$ é a condutância série e $b_{km} (\leq 0, \text{ indutivo})$ é a susceptância série.

A corrente I_{km} da Figura 7 é calculada utilizando uma componente em série e uma paralela, utilizando as tensões terminais E_k e E_m , em conjunto com os parâmetros da Equação 10. Desta forma, a corrente é calculada seguindo a Equação 11 (MONTICELLI, 1983).

$$I_{km} = y_{km}(E_k - E_m) + jb_{km}^{sh}E_k$$
(11)

Onde $E_k = V_k \cdot e^{j\theta_k}$ e $E_m = V_m \cdot e^{j\theta_m}$.

3.3.2.2 Transformadores em fase

Um transformador pode ser modelado considerando a admitância série y_{km} e um autotransformador ideal (MONTICELLI, 1983).

Figura 8 – Modelo de um transformador em fase.

Fonte: (MONTICELLI, 1983).

Sendo 1:a a relação de transformação do autotransformador ideal e p um barramento imaginário intermediário entre as barras verificadas. Assim, tem-se que, para um autotransformador em fase:

$$V_p = a \cdot V_k \quad (12)$$
$$\theta_p = \theta_k \quad (13)$$

$$\therefore \frac{E_p}{E_k} = \frac{V_p \cdot e^{j\theta_p}}{V_k \cdot e^{j\theta_k}} \to \frac{E_p}{E_k} = \frac{a \cdot V_k}{V_k} = a \qquad (14)$$

Uma vez que o transformador é ideal, não há dissipação de potência, o que implica que a potência que entra no transformador é a mesma que sai (MONTICELLI, 1983). Assim sendo:

$$S_{kp} + S_{pk} = 0$$

$$E_k \cdot I_{km}^* + E_p \cdot I_{mk}^* = 0$$
(15)

$$\frac{I_{km}}{I_{mk}} = -a \qquad (16)$$

O transformador em fase pode ser, analogamente ao caso de linhas de transmissão, representado por um equivalente π dado na Figura 9.

Figura 9 – Circuito equivalente π de transformadores em fase.

Fonte: (MONTICELLI, 1983).

Os parâmetros A, B e C são calculados a partir das correntes presentes no circuito. Assim, tem-se:

$$\frac{I_{km}}{I_{mk}} = -\frac{I_{km}}{I_{pm}} = -a \qquad (17)$$

$$I_{km} = aI_{pm} = a(-I_{mk})$$

$$I_{km} = ay_{km}(E_p - E_m) = ay_{km}(aE_k - E_m)$$
(18)
$$I_{km} = (a^2 y_{km})E_k + (-ay_{km})E_m$$

$$I_{mk} = -I_{pm}$$

$$I_{mk} = -[y_{km}(E_p - E_m)] = -y_{km}(aE_k - E_m) \quad (19)$$

$$I_{mk} = (-ay_{km})E_k + y_{km}E_m$$

Pela Figura 9, pode-se descrever as mesmas correntes, levando em conta os parâmetros A, B e C tais que:

$$I_{km} = (A+B)E_k + (-A)E_m I_{mk} = (-A)E_k + (A+C)E_m$$
(20)

Quando comparadas com as equações anteriores, é possível então concluir que os parâmetros são os descritos no conjunto de Equações 21.

$$A = ay_{km}$$

$$B = a(a-1)y_{km} \quad (21)$$

$$C = (1-a)y_{km}$$

3.3.3 Expressões gerais dos fluxos de potência

Uma vez que as equações gerais de corrente dos elementos modelados apresentam características semelhantes, é possível uni-las para se obter expressões gerais (MONTICELLI, 1983).

Considerando-se o fluxo de potência, é possível verificar as Equações 22.

$$S_{km}^{*} = P_{km} - jQ_{km} = E_{k}^{*}I_{km}$$

$$S_{mk}^{*} = P_{mk} - jQ_{mk} = E_{m}^{*}I_{mk}$$
(22)

Para linhas de transmissão, utilizando a equação da corrente encontrada previamente, é possível obter os respectivos valores de potência ativa e reativa do elemento ao substituí-lo na equação. Após a substituição e conseguintes cálculos, o mesmo é feito com os transformadores, para isso utilizando a respectiva equação de corrente do modelo também verificada anteriormente. (MONTICELLI, 1983).

É possível, portanto, achar uma equação geral de corrente para a qual todos os elementos obedeçam. Essa expressão geral de corrente é fornecida no conjunto de Equações 23.

$$I_{km} = (|t|^2 y_{km} + jb_{km}^{sh})E_k + (-t^* y_{km})E_m$$

$$I_{mk} = (-ty_{km})E_k + (y_{km} + jb_{km}^{sh})E_m$$
(23)

Normalmente, t considera a existência de transformadores tanto em fase quanto defasadores, sendo então $t = a_{km}e^{j\varphi_{km}}$ (MONTICELLI, 1983). Entretanto, como a rede analisada não possui nenhum modelo defasador em sua composição, é possível resumir isto para $t = a_{km}$.

No caso de linhas de transmissão, a corrente segue o modelo descrito. Para transformadores em fase, porém, $b_{km}^{sh} = 0$ (MONTICELLI, 1983).

Substituindo estas equações gerais nas equações das potências, informando novamente que $E_k = V_k \cdot e^{j\theta_k}$ e $E_m = V_m \cdot e^{j\theta_m}$, obtêm-se as expressões gerais dadas pelos grupos de Equações 24 e 25.

$$P_{km} = (a_{km}V_k)^2 g_{km} - (a_{km}V_k)V_m[g_{km} \cdot \cos(\theta_{km}) + b_{km} \cdot sen(\theta_{km})]$$

$$Q_{km} = -(a_{km}V_k)^2 (b_{km} + b_{km}^{sh}) - (a_{km}V_k)V_m[g_{km} \cdot \sin(\theta_{km}) - b_{km} \cdot \cos(\theta_{km})]$$
(24)

$$P_{mk} = g_{km}V_m^2 - (a_{km}V_k)V_m[g_{km} \cdot \cos(\theta_{km}) - b_{km} \cdot sen(\theta_{km})]$$

$$Q_{km} = -(b_{km} + b_{km}^{sh})V_m^2 - (a_{km}V_k)V_m[g_{km} \cdot sen(\theta_{km}) + b_{km} \cdot cos(\theta_{km})]$$
(25)

Estas expressões gerais, portanto, regem os fluxos de potência ativa e reativa de linhas de transmissão e transformadores em fase, sendo possível encontrar as respectivas equações de cada um realizando a ação descrita anteriormente (no caso de transformadores em fase, tornar $b_{km}^{sh} = 0$) (MONTICELLI, 1983).
4 MELHORIA DO PERFIL DE TENSÃO E REDUÇÃO DE PERDAS TÉCNICAS EM REDES DE DISTRIBUIÇÃO

4.1 Qualidade de energia

O conceito de qualidade de energia, ou QEE, pode ser compreendido como o grau em que a eletricidade da rede está livre de distúrbios que afetem seu desempenho e eficiência. Desta forma, quanto maior a qualidade, mais esta pode ser chamada de "energia limpa" ou eficiente. Dentre tais distúrbios, pode-se citar as flutuações de magnitude ou frequência de tensão, a continuidade do fornecimento (ausência de interrupções ou desligamentos), os surtos de tensão e os harmônicos na rede (DUQUE, 2013; PORTELA e ROSA, 2016).

Ainda não há um consenso a nível internacional no que diz respeito à quantificação desta qualidade, com normas determinantes das condições aceitáveis de operação variando de acordo com cada país. Cada nação possui diferentes demandas quanto ao seu sistema elétrico, dependendo do tipo de carga de seus consumidores. Mesmo assim, uma padronização se faz necessária para a implementação de sistemas de potência flexíveis (POMILIO e DECKMANN, 2009).

Atualmente, o método de avaliação da qualidade de energia é comparar seus parâmetros a um modelo ideal. Neste modelo tem-se características impossíveis de serem satisfeitas na prática, porém é uma maneira de guiar para onde se devem voltar os esforços em melhorias da rede. Idealmente, um sistema elétrico trifásico em corrente alternada deve trabalhar com sinais de tensão e corrente puramente senoidais, frequência síncrona e tensões nominais constantes, perdas nulas e fator de potência unitário, além de possuir equilíbrio entre suas fases (POMILIO e DECKMANN, 2009).

Desta forma, busca-se atingir patamares mais próximos possíveis dos fatores conforme descritos. Quanto mais afastado destes, menor é a qualidade de energia observada. É possível então notar como os distúrbios contribuem para o empobrecimento da energia elétrica, afastando os parâmetros ainda mais do modelo ideal, seja com aumento de perdas, distorções dos sinais de tensão e corrente, causando desequilíbrios nas fases ou redução do fator de potência (POMILIO e DECKMANN, 2009).

Assim, é natural que se tenha buscado uma melhor racionalização e eficiência do uso da energia. O problema reside no fato de que, para tais medidas, normalmente utilizam-se equipamentos que intensificam os efeitos causados por harmônicos, ou suscetíveis a ressonâncias (DUQUE, 2013).

A ampliação da quantia de cargas eletrônicas adotadas provou-se benéfico, inicialmente, ao sistema elétrico. Com a adoção de medidores e processadores eletrônicos, mais precisos e rápidos que seus antecessores eletromecânicos. Observou-se um aumento na eficiência dos equipamentos, bem como na redução do tamanho e peso dos aparelhos (CARVALHO, 2013).

Entretanto, essa evolução acrescentou nas redes elétricas já existentes um elemento novo, para o qual as mesmas não haviam sido projetadas. Inicialmente restritas a indústrias, não havia a preocupação quanto à distorção na tensão de alimentação causada por cargas não lineares de consumidores residenciais e comerciais, ou mesmo a necessidade de monitorar como estes afetavam a rede. Entretanto, cada vez mais foram se popularizando aparelhos eletrônicos para uso convencional, que possuíam circuitos e componentes mais sensíveis aos harmônicos, que agora apresentavam risco à vida útil dos aparelhos (CARVALHO, 2013).

Além disso, optando por cada vez mais utilizarem eletrônicos, os consumidores passaram a também ser fontes consideráveis de harmônicos em uma rede que, conforme dito anteriormente, não foi inicialmente projetada com esta preocupação levada em conta. Com o crescimento da não linearidade destas redes, houve a necessidade de novos estudos, aperfeiçoamentos e monitoramento deste novo perfil que havia surgido (CARVALHO, 2013).

A preocupação ia desde garantir o bom funcionamento dos equipamentos dos consumidores, através de uma boa qualidade da energia fornecida, até se preocupar com a integridade da rede elétrica, afirmando a funcionalidade de seus equipamentos por mais tempo. Para tal, foram impostos limites de componentes harmônicos, bem como para as distorções na forma de tensão e corrente. Assim, foi possível assegurar uma boa qualidade de energia para que tanto concessionárias como consumidores não sejam prejudicados com o empobrecimento da rede. Estes padrões de qualidade impostos foram cada vez mais ficando exigentes, progredindo conforme a tendência de cargas injetoras de harmônicos na rede também cresceu (CARVALHO, 2013).

Segundo Carvalho (2013, p. 2-3), "a linearidade de uma carga elétrica consiste na proporcionalidade entre a tensão em seus terminais e a corrente por ela absorvida". Em sistemas de distribuição a corrente utilizada é a alternada, a mesma que serve de alimentação para cargas lineares, estando a corrente defasada ou não em relação à tensão. Cargas lineares comumente são resistivas, ou mesmo reativas capacitivas ou indutivas, desde a tensão e corrente do equipamento elétrico tenha forma senoidal pura.

Existem casos, porém, em que a carga requisita uma corrente não senoidal para seu funcionamento, mesmo que a alimentação seja da forma senoidal. Como exemplo de cargas que funcionam de tal forma podem ser citados aparelhos com chaveamento de corrente, como

retificadores, inversores e conversores de frequência, *soft-starters*, fontes chaveadas, lâmpadas fluorescentes com reatores, etc. (CARVALHO, 2013).

É necessário saber o funcionamento de tais cargas e como estas interferem no formato de onda, pois, já que normalmente várias cargas são conectadas em um mesmo ponto (denominado ponto de acoplamento comum, ou PAC), estas podem afetar o funcionamento de umas às outras. É esperado que a interferência devido ao uso de cargas não lineares, ou mesmo devido à ação de harmônicos, faça com que a tensão de alimentação no PAC não seja puramente senoidal. Assim, é importante verificar a intensidade de tal distorção, para que a mesma não venha a prejudicar o funcionamento das cargas acopladas ao ponto (CARVALHO, 2013).

4.2 Bancos de capacitores

Bancos de capacitores são dispositivos constituídos de vários capacitores associados. São comumente utilizados na correção de fator de potência e regulação do perfil de tensão, reduzindo a circulação de energia reativa ao compensá-la, fornecendo os reativos necessários pela carga. Assim, é como se o fluxo de reativos se limitasse a um ponto mais próximo da carga (REIS e KIKUCHI, 2015).

Assim sendo, é necessário realizar uma análise das características da carga, para que o banco capacitivo seja dimensionado corretamente a fim de atender a demanda do cenário em questão. Esta análise depende do método em que o dispositivo será utilizado, e deve-se ter um bom conhecimento quanto às cargas envolvidas. As opções variam da instalação de bancos próximos a cargas individuais até sua utilização em grupos de carga. No primeiro caso, há uma maior melhora do FP de um equipamento específico, enquanto a segunda pretende atender um setor, suprindo as demandas de forma mais abrangente, porém mais econômica, uma vez que um banco de maior potência é mais barato do que várias unidades menores (REIS e KIKUCHI, 2015).

Ao reduzir o fluxo de potência reativa na rede são esperadas melhorias, tais quais redução de perdas, bem como do total da potência aparente circulando, exigindo menos do sistema elétrico de distribuição e seus equipamentos. Desta forma, a vida útil destes também apresenta crescimento, bem como a estabilidade da rede (FRAGOAS, 2008).

4.2.1 Dimensionamento de bancos de capacitores

Ao se fazer o estudo para determinar as dimensões do banco de capacitores que será instalado em paralelo com a rede de distribuição, é importante definir previamente a quantidade de potência reativa capacitiva necessária para elevar o fator de potência ao valor desejado. É importante notar que, mesmo que o valor mínimo estipulado pela Aneel seja de FP > 0,92, busca-se atingir um fator preferencialmente acima de 0,97 durante o cálculo das propriedades do banco (FRAGOAS, 2008).

O efeito causado pela atuação do banco de capacitores pode ser descrito visualmente pela Figura 10, demonstrando a alteração que ocorre no triângulo de potências.

Figura 10 – Alteração no triângulo de potências devido a atuação do banco de capacitores.

Fonte: Adaptado de Fragoas (2008).

A partir da Figura 10, entendendo Q e Q' como sendo, respectivamente, a potência reativa antes e depois do uso de um banco de capacitores, tem-se então que Q_C é a potência reativa capacitiva proporcionada pelo elemento instalado. De forma análoga, S e S' representam a potência aparente antes e depois da alteração feita. Assim, é possível notar que, mesmo com a potência real P se mantendo constante, é possível reduzir a potência total necessária na rede, reduzindo seus custos com tal medida.

4.2.2 Alocação de bancos de capacitores

Além da correção de fator de potência, os bancos de capacitores podem ser utilizados para regular o perfil de tensão da rede, buscando melhorá-lo. Neste caso, os bancos são instalados em pontos da rede de distribuição local, ao contrário do caso de correção de fator de potência, onde se busca instalar um banco junto ao alimentador. O uso de bancos de capacitores e reguladores de tensão para reduzir perdas e melhorar o perfil de redes de distribuição é algo comum, solucionando tais problemas em casos onde não são verificados níveis graves que exijam soluções mais drásticas, como reconfiguração de rede (ALMEIDA et al. 2009).

A escolha dos melhores locais de instalação de capacitores e seus respectivos dimensionamentos é realizada durante a etapa de planejamento. Deve-se determinar quantas unidades serão utilizadas, suas dimensões e localizações tal que o máximo de benefícios sejam obtidos, obedecendo às restrições operacionais para diferentes níveis de carregamento (FELBER, 2010).

Os capacitores para correção de tensão podem ser instalados em série ou paralelo, sendo normalmente do tipo estático. Alguns possuem capacidade apenas de realizar correção de tensão, e não o controle da mesma (FELBER, 2010).

Nos sistemas de distribuição, há uma queda de tensão na linha de distribuição causada tanto pela corrente devido à potência ativa quando a corrente devido à potência reativa. Desta forma, o banco de capacitores contribui compensando a parte desta queda de tensão referente à potência reativa, para isso elevando a tensão (FELBER, 2010).

Quanto à alocação, os alimentadores de redes de distribuição podem possuir milhares de nós elétricos e dezenas de quilômetros de comprimento. Assim, é comum existirem diversas soluções distintas quanto à alocação, necessitando então de uma análise para decidir uma solução ótima a ser adotada (FELBER, 2010).

Deve-se tomar cuidado ao decidir o local de forma que a elevação de tensão causada por bancos de capacitores ajude em períodos de carga pesada, impedindo que o perfil de tensão caia abaixo do valor mínimo aceitável, enquanto mantém um nível abaixo do valor máximo de tensão durante cargas leves. Isto pode ser obtido com o uso de bancos chaveados, que definem quando estes devem operar ou determina níveis discretos de operação que podem ser adotados conforme a situação demandar (FELBER, 2010).

Fonte: (FELBER, 2010)

Normalmente utilizam-se bancos em paralelo, porém em casos de linhas de distribuição extensas a compensação série passa a ser uma alternativa a se considerar (FELBER, 2010).

4.2.3 Correção do perfil de tensão e redução de perdas com o uso de capacitores

Perdas de potência em um sistema elétrico de distribuição são inevitáveis, porém, com o uso certo de unidades capacitivas, é possível reduzir as mesmas e seus impactos.

Normalmente, estas são divididas em perdas fixas e variáveis. As fixas são inerentes ao funcionamento de equipamentos na rede elétrica, sendo assim constantes. O custo destas

normalmente é baixo quando comparadas ao outro tipo. Perdas variáveis se alteram conforme a variação de carga, sendo normalmente mais custosas que o primeiro tipo (ALMEIDA, 2009).

Ao se trabalhar com uma situação mais próxima às unidades consumidoras, há uma incerteza envolvida no processo de comportamento das cargas. Isto se deve à dificuldade de prever ações individuais dos clientes, como a instalação ou remoção de equipamentos da rede. Embora não utilizem cargas tão pesadas quanto o setor industrial, o comportamento imprevisível torna difícil a representação efetiva do comportamento da rede, mesmo com o uso de softwares (HAFFNER et al., 2009).

Principalmente em horários de picos, o foco deve se dar em reduzir as perdas variáveis. Isto pode ser feito analisando a curva de carga e utilizando bancos chaveados, programados para funcionar e parar em horários pré-determinados, minimizando as perdas de energia (ALMEIDA, 2009).

Os capacitores compensam o atraso na fase da componente reativa de corrente em relação à tensão. Com a aplicação destes, é possível reduzir a corrente fornecida à carga. Assim, é reduzida a queda de tensão entre o emissor e o receptor de energia, embora os bancos em derivação não afetem a corrente ou modifiquem o FP nos trechos à jusante dos seus pontos de instalação. Desta forma, a alocação se mostra novamente importante (ALMEIDA, 2009).

Figura 12 – Diagramas fasoriais para o circuito de um alimentador com fator de potência atrasado. (a) e (c) mostram o caso sem capacitores, enquanto (b) e (d) mostram o caso com

uso de capacitores.

Fonte: (ALMEIDA, 2009)

4.2.4 Consequências advindas do uso de capacitores

Para garantir que a instalação e manutenção dos bancos capacitivos seja feita de forma correta, é necessário saber a correlação destes elementos com sobretensões e correntes harmônicas. Conforme dito anteriormente, um capacitor que funcione em períodos de carga leve sem reduzir sua capacitância pode causar uma sobretensão na rede, apresentando perdas e redução da vida útil dos equipamentos conectados. O mesmo pode ocorrer caso existam dois ou mais bancos energizados simultaneamente durante operações nos mesmos, comprometendo as partes do equipamento (FRAGOAS, 2008).

Em locais que se utilizam de bancos de capacitores para compensação de reativos e correção de fator de potência, a presença de harmônicas pode resultar em ressonâncias. Neste caso, há uma sobretensão e avaria dos capacitores, podendo chegar à queima de suas unidades ou, pelo menos, a redução de sua vida útil (CARVALHO, 2013; DUQUE, 2013).

Mesmo em casos em que não haja ressonância, capacitores são trajetos de baixa impedância para a passagem de correntes harmônicas. Desta maneira, devido a passagem de correntes de alta frequência, há uma sobrecarga e danificação intensa dos componentes capacitivos. Esta suscetibilidade a avarias devido a harmônicos faz com que, ao se projetar um banco de capacitores, estas distorções sejam levadas em conta para que o equipamento não tenha sua vida útil severamente reduzida (CARVALHO, 2013; DUQUE, 2013).

Por conseguinte, para garantir a elevação do fator de potência, é necessário mais do que compensar os reativos. Deve-se também reduzir o máximo possível do conteúdo harmônico da rede (POMILIO e DECKMANN, 2009). É importante realizar um estudo sobre harmônicas na rede em que se deseja colocar um banco de capacitores, a fim de garantir uma instalação segura e protegida, evitando danos tanto no equipamento quanto na rede (GARCIA, 1997).

4.3 Reconfiguração de rede

Ao se levar em conta que, em uma rede de distribuição, interrupções no fornecimento de energia são inevitáveis, seja para realização de obras na rede, manutenção ou por atuação de equipamentos de proteção, é necessário o planejamento de manobras para contornar tais casos (KAGAN e OLIVEIRA, 1998).

A reconfiguração do sistema faz-se então essencial para realizar tais manobras da forma mais eficiente possível, o que no caso significa restringir ao mínimo a área que virá a ser desenergizada, mantendo níveis de tensão satisfatórios e buscando reestabelecer o suprimento

para os consumidores à jusante da área o mais rapidamente possível. Tudo isto deve ainda ser realizado levando em conta o carregamento máximo nos componentes da rede e a manutenção da radicalidade do sistema (KAGAN e OLIVEIRA, 1998).

Conforme dito, a suspensão do abastecimento de energia elétrica pode se dar por diferentes motivos, sendo que alguns podem ser planejados previamente (para o caso de obras de expansão ou manutenção preventiva da rede), enquanto outros exigem respostas imediatas (defeitos no sistema). A natureza de tais descontinuações, entretanto, possui semelhanças, tais como a incerteza na duração das mesmas e a necessidade da rede e seus elementos voltarem ao estado normal após encerrada a interrupção (KAGAN e OLIVEIRA, 1998).

As possibilidades de circundar o corte no fornecimento de eletricidade seguindo as restrições citadas anteriormente são diversas, porém o processo pode ser descrito suscintamente em alguns passos, tanto para obras quanto ao se lidar com defeitos. Primeiro, deve-se identificar o local onde ocorre a interrupção, isolando apenas o mínimo necessário através da abertura e fechamento de chaves seccionadoras. Em seguida, é essencial manobrar os equipamentos da rede de forma a reestabelecer o abastecimento de energia à jusante da parcela isolada o mais cedo possível. Após corrigido o problema, realiza-se novamente as ações necessárias com as chaves para que estas retornem ao estado inicial (KAGAN e OLIVEIRA, 1998).

Como a reconfiguração de rede é uma situação transitória, é aceitável que, durante a mesma, alguns critérios de comportamento da rede se tornem menos exigentes, como permitir que certos equipamentos operem em situação precária neste período. É comum utilizar-se de algoritmos ou elementos automatizados, para decidir qual o melhor curso de ações a ser tomado, uma vez que as possibilidades são diversas ao se levar em conta quantas chaves podem ser manobradas mesmo em um segmento da rede. Prioriza-se, normalmente, os métodos com menor número de aberturas e fechamentos de chaves, a fim de se conseguir executar o procedimento no menor tempo possível. Não fosse este o caos, certos consumidores seriam prejudicados por longos cessares de fornecimento e, para casos como indústrias e comércios, isto acarretaria em prejuízos e interrupção em suas produções (KAGAN e OLIVEIRA, 1998).

5 MODELAGEM DA REDE DE DISTRIBUIÇÃO DA UFAC NO SINAPGRID

O trabalho apresentado se trata de um estudo de caso onde se busca, ao final de tudo, obter propostas que forneçam melhorias no perfil de tensão da rede de distribuição de energia elétrica do campus sede de Rio Branco da Ufac.

É proposto, conforme informado pelo título deste documento, uma análise de tensão e do comportamento de redes de distribuição, utilizando como exemplo o caso estudado da rede citada anteriormente. Pretende-se simular o comportamento atual da rede e, então, repetir o procedimento com modificações aplicadas, permitindo uma visualização dos impactos decorrentes das medidas tomadas. Realizar a simulação, por exemplo, com a adição de capacitores para regulação de tensão proporcionará informações acerca de como o uso de unidades capacitivas pode afetar, na prática, o comportamento da rede.

A inspiração e embasamento deste trabalho provém do projeto intitulado "Eficiência energética e uso racional de energia elétrica na Universidade Federal do Acre", promovido pelo Ceeac, especificamente a etapa que conduziu a análise da rede elétrica em questão. Com o georreferenciamento e o levantamento das características tanto das estruturas como dos equipamentos, foi possível obter os dados necessários para que a simulação da rede fosse conduzida.

Tendo o autor desta obra participado do projeto no cargo de bolsista de iniciação científica, optou-se por tal tema a fim de complementar uma série de outros trabalhos de conclusão de curso desenvolvidos por outros bolsistas participantes. Assim, este trabalho também busca gerar um produto resultante da catalogação realizada.

5.1 O campus sede Rio Branco da Universidade Federal do Acre

O campus sede em Rio Branco da Universidade Federal do Acre possui 292,3478 hectares de extensão. Destes, 86.817,90 m² são de área física construída até 2017 (UFAC, 2018. p. 70 - 71).

Utilizando critérios de alimentação da rede elétrica e proximidade das estruturas, a parte construída do campus pode ser dividida em cinco zonas. Cada uma destas recebe a energia elétrica a partir de uma entrada diferente.

A partir disto, então, pode-se definir as cinco áreas conforme a seguir:

 Parte principal e mais extensa, contendo a maior concentração de blocos. Sua rede de energia elétrica é alimentada a partir da entrada principal do campus;

- 2. Área contendo a Utal e o novo CAp;
- Zona em que se localizam o hospital veterinário e um segundo bloco, que por sua vez abriga tanto o curso de graduação de Bacharelado em Medicina Veterinária quanto o Programa de Pós-graduação em Sanidade e Produção Animal Sustentável na Amazônia;
- 4. Área principal do Parque Zoobotânico;
- 5. Viveiro do Parque Zoobotânico.

A Figura 13 fornece uma imagem via satélite obtida com auxílio do software Google Earth Pro. Nela, as áreas estão numeradas de acordo com a descrição acima, compreendendo os mesmos blocos e estruturas de rede.

Figura 13 – Imagem via satélite do campus sede Rio Branco e sua divisão em cinco áreas conforme os critérios citados anteriormente.

Fonte: Acervo pessoal.

Para fins de estudo, portanto, será levada em conta apenas a área principal, dada pela área 1 (em branco) acima, onde se concentra a maior parcela consumidora de eletricidade do campus. Esta zona pode ser facilmente identificada como a concentração de blocos próximas às ruas principais, que constituem um formato semelhante a um anel.

5.2 O Centro de Excelência em Energia do Acre

O Centro de Excelência em Energia do Acre promove o desenvolvimento científico e tecnológico dos setores relacionados à energia elétrica no estado do Acre. Seus objetivos, promovidos de forma sustentável, buscam desenvolver estudos, pesquisas, inovação, dentre outros serviços para aprimorar cada vez mais a área, muitas vezes através da qualificação profissional local. Atualmente, o centro mantém, provisoriamente, suas atividades em dois núcleos: um destes localizado nas dependências da Biblioteca Central da Ufac e outro na Eletrobras Eletronorte. Sua sede, entretanto, está atualmente em construção no campus sede da Ufac.

Ainda assim, o centro já está desenvolvendo atividades condizentes com sua proposta, como o projeto citado anteriormente. O projeto intitulado "Eficiência energética e uso racional da energia elétrica na Universidade Federal do Acre" buscou, de diferentes formas, ajudar a universidade a se tornar mais eficiente quanto ao gasto de eletricidade no campus. Houve várias medidas adotadas em diversos âmbitos durante o mesmo, porém será destacada neste trabalho a etapa pertinente ao mesmo, que se trata da análise da rede de distribuição de energia elétrica do campus sede.

Esta etapa envolveu, dentre outras atividades, o georreferenciamento das estruturas componentes da rede do campus citado da Ufac. Buscou-se, em seguida, analisar os transformadores e a carga instalada na universidade. Isto se deu através da averiguação dos valores nominais nas placas dos transformadores, além de medidas realizadas com analisadores de rede.

Tal processo propôs, ademais, a composição de relatórios acerca das características da rede, uma vez obtidos os dados. Desta forma, uma vez em posse das informações georreferenciadas, foi possível criar um croqui e uma planta para melhor visualização da estrutura que compõe a rede.

O croqui foi montado após a conclusão do georreferenciamento. Ele contém a localização de todos os postes e estruturas de suporte registrados. Sua construção foi feita utilizando o software QGIS (Quantum Geographic Information System). Após a análise das características nominais dos transformadores da rede, foi construída uma planta contendo, além das estruturas do croqui, os transformadores e blocos da universidade, bem como as conexões entre os postes, que serão utilizados de base para a modelagem da rede no SINAPgrid. Por motivos da imagem original incluir todo o campus, o resultado que é dado na Figura 14 se tratará de um recorte contendo apenas a área estudada.

Figura 14 – Planta contendo blocos e estruturas da rede de distribuição do campus sede Rio Branco da Ufac.

Fonte: Fornecido pelo Centro de Excelência em Energia do Acre.

5.3 Topologia da rede elétrica de distribuição do campus Rio Branco da Universidade Federal do Acre

A rede de distribuição de energia elétrica do campus Rio Branco da Universidade Federal do Acre se caracteriza como primária de média tensão, utilizando postos de transformação ao tempo próximos aos centros consumidores (blocos) para reduzi-la à baixa tensão. O alimentador da área analisada está localizado próximo à entrada principal.

Abaixo serão apresentados o processo e os resultados obtidos no georreferenciamento desenvolvido pelo Ceeac. Algumas correções serão dadas em seguida, retificando determinados dados com descobertas e visitas que vieram a ser feitas posteriormente.

O georreferenciamento registrou um total de 176 estruturas e 37 transformadores compondo a rede elétrica total da Ufac. Algumas destas estruturas não são necessariamente postes, sendo outros pontos de suporte dos cabos da rede ou, por exemplo, ramais de entrada para unidades consumidoras particulares (TRINDADE, 2019).

Destas 176 estruturas, 154 foram registradas na parte principal do campus. Destas, 5 não são postes. Dos 149 postes, dois não são conectados à rede, porém foram registrados para possíveis usos futuros. Ao todo, apenas 34 dos transformadores registrados pertencem à rede principal que será objeto de estudo (TRINDADE, 2019).

As demais estruturas e transformadores pertencem às outras quatro zonas que não serão analisadas pelos motivos previamente estabelecidos.

Após obtidas as informações dos valores nominais dos transformadores conectados à rede elétrica, foi construído um diagrama unifilar, constando as características dos mesmos e distâncias correspondentes entre eles. O produto obtido previamente às correções mencionadas, que possui a finalidade de fácil análise e futuras consultas, é dado na Figura 15.

Figura 15 – Diagrama unifilar simplificado da rede de distribuição do campus sede Rio Branco da Ufac.

Fonte: Fornecido pelo Centro de Excelência em energia do Acre.

Desde que este diagrama e as outras plantas foram feitas, novas visitas às estruturas da rede da Ufac revelam que certos aspectos catalogados se mostraram desatualizados ou incorretos. Estes serão mencionados no trabalho e informados ao Ceeac após a execução do mesmo para possíveis atualizações dos produtos.

Além dos locais georreferenciados, há uma subestação próxima ao bloco Clóvis Barros França, que inicialmente não foi mapeada. Sua geolocalização foi, portanto, adicionada posteriormente. Esta subestação conta com mais dois transformadores que também foram negligenciados nos primeiros estudos. Sua conexão com o restante da rede se dá através de cabos subterrâneos entre a mesma e um dos postes pertencentes à rede aérea.

Quanto aos transformadores pertencentes à área estudada, alguns dados relativos a potência nominal dos transformadores se mostraram incorretos, e foram corrigidos na versão final deste trabalho. Levando em conta o diagrama unifilar exibido, as alterações realizadas foram:

- O transformador localizado no estacionamento em frente ao Anfiteatro Garibaldi Brasil, de potência nominal 125 kVA, foi corrigido para o valor correto de 112,5 kVA;
- O transformador em frente ao chafariz na rotatória próxima à entrada teve sua potência nominal corrigida de 75 kVA para 30 kVA;
- O transformador próximo ao bloco Euclydes de Oliveira Figueiredo, de potência nominal registrada inicialmente como 112,5 kVA, passou a ter 75 kVA;
- Um dos transformadores próximos ao restaurante universitário, de 150 kVA, foi observado como estando desconectado da rede de distribuição;
- Dois transformadores foram adicionados na subestação abrigada próximo à reitoria, o primeiro sendo de 30 kVA e o segundo de 300 kVA;
- O alimentador presente na entrada da universidade havia erroneamente sido registrado como um transformador, e foi devidamente corrigido no trabalho.

Assim, dos 34 transformadores que se pensou estarem presentes no georreferenciamento, um era outro tipo de elemento e outro estava desconectado da rede. Este segundo ainda foi considerado no trabalho para fins de nomenclatura dos transformadores presentes na simulação. Com a adição dos dois pertencentes à subestação, o número retorna a 34, embora a nomenclatura vá de 1 a 35 (o transformador desligado, ausente nas simulações, é representado pelo número 31).

5.4 SINAPgrid

Para a análise de redes elétricas há vários softwares disponíveis que permitem a simulação de um sistema. Dentre eles, há o SINAPgrid, uma plataforma utilizada na análise de redes elétricas, podendo ser utilizada tanto na operação como no planejamento de uma rede elétrica. Esta ferramenta possui maior foco em redes de distribuição, embora possa também ser utilizada nos demais setores de forma satisfatória (SINAPSIS ENERGIA, s.d.).

O SINAPgrid permite a modelagem integral de um sistema elétrico, desde sua geração até a distribuição, permitindo modelagens e análises de rede em diferentes níveis de tensão. Sua funcionalidade, porém, pode ser empregada em desenvolvimentos específicos, comumente realizados em programas de pesquisa e desenvolvimento regulado pela Aneel (SINAPSIS ENERGIA, s.d.).

Uma das maiores vantagens do SINAPgrid é sua versatilidade, podendo representar diferentes tipos de rede (radial; em malha; com geração distribuída; etc.) sem restrição ao nível de tensão, o que permite modelagens e análises de redes inteligentes sob diferentes perspectivas (SINAPSIS ENERGIA, s.d.).

Suas diversas ferramentas e a capacidade de importar arquivos de outros programas do ramo, como Anarede, Anafas e GIS, acessando inclusive bancos de dados, tornam este software um dos mais importantes para análise do fluxo de carga da rede. Suas funções tornam possível a análise de dados de fluxo de potência e relatórios analisando as simulações realizadas. Além disto, é capaz de simular, monitorar ou mesmo planejar redes inteiras com precisão e confiabilidade (SINAPSIS ENERGIA, s.d.).

A etapa da alocação de bancos de capacitores e reguladores de tensão é realizada com base nos equipamentos já existentes na rede e nos diagnósticos realizados da mesma. Como resultado, o sistema fornece em suas simulações a inserção de tais equipamentos nos melhores pontos indicados do sistema (SINAPSIS ENERGIA, s.d.).

A plataforma, por fim, permite a visualização de mapas temáticos, tornando mais fácil o planejamento acerca da distribuição espacial de carga e do desempenho do sistema em questões acerca dos níveis de tensão em regime permanente (SINAPSIS ENERGIA, s.d.).

Optou-se pelo uso específico deste software com a intenção de gerar um produto a ser aproveitado pelo Ceeac, uma vez que o programa é utilizado pelo mesmo, bem como pela Eletroacre Energisa, responsável pelo setor de distribuição de energia elétrica do estado do Acre. Assim, busca-se com este trabalho não apenas simular o caso da rede da Ufac, mas também aproveitar a oportunidade e treinar a proficiência na ferramenta adotada. Ao iniciar o software e criar-se uma base de dados para se trabalhar, são reveladas diversas funções do programa, algumas das quais não virão a ser utilizadas no estudo feito. Estas ferramentas incluem, mas não estão limitadas, a inclusão de elementos da rede, geração de relatórios e análise do comportamento da rede simulada.

Figura 16 – Interface do programa SINAPgrid pronta para adição dos elementos componentes de redes.

Fonte: Criada pelo programa SINAPgrid.

5.5 Modelagem dos elementos da rede

A fim de criar uma simulação satisfatória da rede de distribuição primária da Ufac, devese realizar a modelagem dos elementos da rede e equipamentos principais presentes. As etapas deste trabalho desenvolvido no programa são descritas a seguir, incluindo os dados necessários para a representação de cada equipamento.

A criação da rede dentro do software se divide em duas partes principais: a criação de uma representação fiel da rede em si, com os postes e cabos seguindo suas contrapartes reais – tanto em características quanto distâncias corretas –, e a adição de equipamentos essenciais para o análise do perfil de tensão da mesma, incluindo transformadores, cargas e alimentação da mesma.

5.5.1 Configuração da rede

Inicialmente, é necessária a criação de uma rede de média tensão para que seja possível a adição dos elementos da mesma. No software, é possível utilizar os tipos de rede préexistentes ou adicionar um novo.

Na Figura 17 é mostrada a janela fornecida pelo programa com a descrição de diferentes tipos de redes que já constam no programa.

Figura 17 – Interface do SINAPgrid descrevendo diferentes tipos de redes.

💽 Configuração de Tipos de Redes 🛛 🗙 🗙				
🗸 Confirmar	🗙 Cancelar 🛛 🛟 Inserir 🛨 Exe	cluir		
Tipo Rede	Descrição	Cor		
SET	Subestação de Transmissão			
SDAT	Sistema de Distribuição AT			
SED	Subestação de Distribuição			
SDMT	Sistema de Distribuição Primário			
SDBT	Sistema de Distribuição Secund			
STAT	Sistema de Transmissão AT			
Indefinida	Rede não definida			

Fonte: Criada pelo programa SINAPgrid.

Nesta etapa é necessária a definição de apenas uma rede. Selecionando-se a configuração padrão do software para sistema de distribuição primária, o próximo passo é adicionar uma rede de distribuição primária de tensão nominal 13,8 kV, o mesmo valor da Ufac.

Figura 18 – Interface do SINAPgrid para inserção dos parâmetros de novas redes.

Fonte: Criada pelo programa SINAPgrid.

5.5.2 Modelagem das barras

Para definir uma barra na rede criada, é possível fazê-lo de forma arbitrária ou utilizando coordenadas geográficas. Todas são configuradas automaticamente na tensão nominal da rede, embora isto possa ser alterado. Neste sistema, os postes serão representados por barras, com os trechos representando a conexão feita através de cabos igualmente à planta apresentada anteriormente.

A Figura 19 mostra a interface a ser utilizada para a criação da barra e adição de suas respectivas coordenadas geográficas.

Figura 19 – Interface do SINAPgrid para inserção dos parâmetros das barras.

Fonte: Criada pelo programa SINAPgrid.

A fim de se obter as distâncias reais entre os postes, as coordenadas serão preenchidas no modelo UTM (Universal Transverse Mercator), conforme as leituras realizadas com o GPS do modelo Garmin GPSMAP 64s e convertidas para uma tabela com o uso do QGIS (TRINDADE, 2019). No SINAPgrid, cada poste foi identificado (na caixa denominada "Código" na imagem acima) de acordo com a sua ordem de registro. Logo, o primeiro poste foi nomeado P001, com o seguinte sendo P002 e assim sucessivamente.

Na Tabela 2, é apresentado um excerto da tabela contendo os pontos e suas coordenadas de longitude e latitude.

ID	Código	UTM X	UTM Y
1	P001	624557	8899285
2	P002	624574	8899266
3	P003	624547	8899244
4	P004	624589	8899295
5	P005	624610	8899316

Tabela 2 – Excerto da tabela de postes e suas respectivas coordenadas geográficas.

Fonte: Criado com o programa QGIS a partir das leituras obtidas no GPS modelo Garmin GPSMAP 64s.

Uma vez que todos os postes tenham sido registrados com suas respectivas coordenadas, ao apertar o botão "Reiniciar esquemático igual ao georreferenciado", conforme na Figura 20, eles assumirão suas respectivas posições geograficamente corretas, permitindo que os trechos entre tais apresentem medições corretas.

Figura 20 – Ferramenta de reiniciar diagrama esquemático igual ao georreferenciado, no

Fonte: Criada pelo programa SINAPgrid (editada).

Assim, tem-se inicialmente uma rede com 154 barras, porém em etapas seguintes serão adicionadas outras 34 para servirem como o lado de secundário dos transformadores da rede, onde serão conectadas as cargas. Para estas, as coordenadas são irrelevantes por serem posicionadas arbitrariamente, e as mesmas não virão a ser identificadas.

Mais uma barra foi adicionada (com o devido auxílio do software Google Earth Pro para aquisição das coordenadas geográficas) para representar a subestação existente próxima do bloco Clóvis Barros França. Esta é conectada subterraneamente ao poste P053 (embora isto não tenha sido especificado na simulação, visto não causar alterações significativas devido a ser uma única estrutura a utilizar conexão subterrânea).

É necessário, por fim, adicionar a barra onde será conectada a alimentação, que será então configurada como a barra inicial da rede, vinda da subestação do Tangará. Este ponto não consta no trabalho de Trindade (2019), portanto sua coordenada foi obtida a partir do trabalho de conclusão de curso de Brito (2018), que também trata de georreferenciamento da rede da Ufac. Neste, são inclusos os postes desde a saída da subestação em questão. Para fins de simulação, não serão adicionados todos os postes registrados deste ponto até a entrada da universidade, apenas tratando o respectivo trajeto como uma linha reta. Para fins de melhor visualização, a barra será deslocada a fim de ficar mais próxima do resto da rede, embora a distância registrada no programa ainda permaneça a mesma, permitindo executar a simulação sem comprometer a análise visual.

Por fim, ao total foram utilizados 190 barramentos na simulação que virão a ser conectados com a adição de trechos.

5.5.3 Configuração dos cabos e arranjos

Antes de adicionar os trechos entre os as barras posicionadas, é necessário configurar o arranjo que eles virão a representar e, consequentemente, o cabo utilizado. Foi identificado que os cabos utilizados nas instalações de distribuição primária da universidade são do tipo CA 2 AWG. O software permite caracterizar o cabo a partir de diferentes conjuntos de parâmetros, sendo o adotado envolvendo seu raio médio geométrico e resistência. Segundo o catálogo virtual da Nexans Brasil (2019), para o modelo CA 2 AWG, RMG = 0,004 m e R = 0,521 Ω /km. Em seguida, foi adotada uma corrente admissível de 290 A. A configuração pode ser visualizada na Figura 21.

🔳 Cabo			×	
🗸 Confirma	ar 🗙 Can	celar		
Cabo				
Código	CA 2 AWG			
Vmin(kV)	0.000	Vmax(kV)	0.000	
ladm(A)	290.0			
Opções p/ definição dos dados do cabo				
Resistência	a/Raio médio	o geométrico		
R(ohm/km)	0.521	RMG(m)	0.004	

Figura 21 – Interface do SINAPgrid para inserção dos parâmetros dos cabos.

Fonte: Criada pelo programa SINAPgrid.

Em seguida, o arranjo padrão foi determinado tal qual seja composto por um poste primário padrão (incluso no próprio SINAPgrid) e o cabo anteriormente citado utilizado em cada fase. A resistência do terra adotada foi de 10 Ω/m , conforme mostrado na Figura 22.

Figura 22 – Interface do SINAPgrid para inserção dos parâmetros dos arranjos.

🔳 Arranj	0				×
🗸 Confirma	ar 🗙 Cancelar				
Arranjo					
Código T	rifásico CA 2 AWG				
 Tipo do Arra Estrutura Cabo de Impedâr Matriz d 	anjo a aérea com cabos d sfinido por impedância ncia e capacitância d e impedâncias e matr	lefinidos por re: a e capacitâno le seqüência riz de capacitâ	sistência e raio ia de seqüência ncias		Uso específico Ramal de Ligação
Fases ABC	~				
Estrutura de	e Suporte		- Declar	_	_
Suporte aér	eo Poste Primário	,	 Hes.terra (ohm/m) 	10.0	
Fase	Cabo		Pto.Fixação		
🗹 Fase A	CA 2 AWG	~	Ponto 1 \sim		
🗹 Fase B	CA 2 AWG	~	Ponto 2 🛛 🗸		
🗹 Fase C	CA 2 AWG	~	Ponto 3 🛛 🗸		

Fonte: Criada pelo programa SINAPgrid.

5.5.4 Modelagem dos trechos

Uma vez configurado o arranjo, é importante modelar todos os trechos. Uma vez que os barramentos estão dispostos conforme suas coordenadas geográficas, o comprimento dos trechos é automaticamente calculado. É possível alterar o arranjo do mesmo e verificar sua distância na janela fornecida pelo SINAPgrid, mostrada na Figura 23.

📧 Edição de Trecho			
🗸 Confirm	ar 🗙 Cancelar 🔇 Retirar		
Trecho			
Código			
Rede	Rede_13.8kV	\sim	
Comp.(m)	30.41 Dividir trecho		
Tipo de A	rranjo o Típico 🛛 O Arranjo Próprio		
Arranjo Tí	pico		
Trifásico (CA 2 AWG	\sim	

Figura 23 – Interface do SINAPgrid para inserção dos parâmetros dos trechos.

Fonte: Criada pelo programa SINAPgrid.

Ao fim das conexões sendo realizadas utilizando como guia a planta construída previamente no AutoCAD, é possível ver na Figura 24 a rede tomando forma semelhante ao que foi observado nos produtos anteriores. Isto confirma, então, a validade do posicionamento geográfico realizado anteriormente das barras.

Figura 24 – Princípio de representação da rede de distribuição primária da Ufac com todas as barras devidamente posicionadas e interligadas de acordo com dados georrefenciados.

Fonte: Criada pelo programa SINAPgrid.

É importante notar que até este momento ainda estão sendo utilizadas somente 156 barras, com as outras 34 sendo adicionadas apenas quando forem modelados os transformadores.

5.5.5 Modelagem da chave

Entre os postes P074 e P075 existe uma chave seccionadora que normalmente é mantida em aberto. Para fins de estudos, esta será adicionada na rede em estado aberto. É possível, entretanto, mudar seu estado facilmente utilizando a interface mostrada na Figura 25, o que pode ser feito para verificar mudanças no comportamento da rede em decorrência disto.

Figura 25 – Interface do SINAPgrid para inserção dos parâmetros das chaves.

🔳 Edição	💽 Edição de Chave 🛛 🗙				
🗸 Confirmar	🗙 Cancelar 🕐 Retirar				
Dados da c	have				
Código	Chave Seccionadora				
Rede	Rede_13.8kV ~				
Tipo	Seccionadora ~				
Tipo GIS					
Inom(A)	0.0				
Estado	Aberta 🗸 🗌 Bloqueada				
	Aberta Fechada				
-Tecnologia	de comunicação				
Desconhe	cido 🗸 🗸				
Telecom	aando disponível				

Fonte: Criada pelo programa SINAPgrid.

5.5.6 Modelagem do alimentador

O alimentador, conforme citado anteriormente, é conectado a barra correspondente à subestação do Tangará, de onde sai a rede de distribuição primária em direção à universidade. O alimentador colocado foi do tipo V/ θ com potência máxima de 20 MVA, a fim de comportar toda a potência da rede sem riscos de subdimensionamento.

🔳 Edição	de Suprimen	to		\times
🗸 Confirmar	🗙 Cancela	ar 🗶 Re	tirar 🏢 I	mporta Curva
Suprimento	Equivalente	Curva	Gráfico	
Código				
Entrada				
Tipo				
V/teta				~
Smáxima (N	IVA)			
100.000				
Vnom(kV)				
13.800				

Figura 26 – Interface do SINAPgrid para inserção dos parâmetros dos alimentadores.

Fonte: Criada pelo programa SINAPgrid.

5.5.7 Modelagem dos transformadores

Existem, ao todo, 34 transformadores na rede analisada, uma vez que um dos 35 encontrados atualmente não está conectado à rede. Sua modelagem requer, segundo demonstrado na Figura 27, a potência nominal, perdas no ferro (em porcentagem), resistência e reatância (em pu) nos lados de baixa e de alta.

Figura 27 – Interface do SINAPgrid para inserção dos parâmetros dos transformadores.

🔳 Edi	📧 Edição de Transformador 🛛 🗙				
🗸 Conf	irmar 🗙	Cancelar 😮 Retira	r		
Trafo	Primário	Secundário			
Rede		Rede_13.8kV		~	
Código		Trafo01			
Snom (MVA) 0.225 r0 (pu) 0.00000			0.00000		
Perda ferro (%)		0.314	x0 (pu)	0.04500	
LTC: Aji	uste	Não Utilizado 🛛 🗸	r1 (pu)	0.00000	
automa			x1 (pu)	0.04500	
			Sbase	Pot.Nominal 🗸 🗸	
			🗌 Auto-trar	nsformador	

Fonte: Criada pelo programa SINAPgrid.

A fim de obter as características de cada unidade, foi realizado um levantamento por parte do Ceeac em parceria com a Eletroacre Energisa em que, com o uso de uma câmera destinada a este tipo de serviço, foram registrados os dados das placas nos transformadores. Assim, tendo em mãos o valor de potência nominal de cada aparelho individual, e após as correções realizadas com verificações posteriores, foi possível pesquisar suas outras características em sites de fabricantes.

Abaixo segue a Tabela 3 contendo a informação acerca de quantos transformadores de cada valor nominal existem na rede. Nesta, ainda é considerado o transformador que está desconectado da rede (de 150 kVA).

Potência (kVA)	Unidades
30	7
45	4
75	6
112,5	3
150	8
225	6
300	1
Total	35

Tabela 3 – Quantidade de transformadores de acordo com sua potência nominal.

Fonte: Fornecido pelo Centro de Excelência em Energia do Acre.

A fonte escolhida para esta simulação foi o catálogo virtual da WEG (2019), de onde foram tiradas informações tais quais perdas no ferro (em W), perdas totais (em W), corrente de excitação (em pu) e impedância (em pu).

Para estas simulações, as resistências consideradas foram zero e as reatâncias iguais a impedância fornecida pelo catálogo. Houve a conversão das perdas no ferro de forma a se obter seu valor equivalente percentual (considerou-se que o valor em Watts ocorre em um sistema com FP de 0,92).

Ao fim, é possível obter a Tabela 4 com os elementos coletados, para cada tipo de transformador de distribuição verificado na rede.

Potência (kVA)	30	45	75	112,5	150	225	300
Perdas no ferro (W)	150	195	295	390	485	650	810
Perdas no ferro (VA)	163,0435	211,9565	320,6522	423,913	527,1739	706,5217	880,4348
Perdas no ferro (%)	0,543478	0,471014	0,427536	0,376812	0,351449	0,31401	0,293478
Perdas totais (W)	695	945	1395	1890	2335	3260	4060
Corrente de excitação (pu)	0,036	0,032	0,027	0,025	0,023	0,021	0,019
Impedância (pu)	0,035	0,035	0,035	0,035	0,035	0,045	0,045

Tabela 4 - Características dos transformadores de acordo com sua potência nominal.

Fonte: Catálogo virtual da WEG. Disponível em: <http://ecatalog.weg.net/>. Acessado em 13 de maio de 2019.

No software, os transformadores são elementos de conexão na rede, exigindo serem colocados entre duas barras. Desta forma, são necessários os 34 barramentos novos conforme descrito anteriormente. A essas barras, que representam o secundário de cada transformador, serão acopladas as respectivas cargas. O resultado será, então, uma simulação em que toda a carga suprida por estes será representada como concentrada imediatamente sobre o transformador, ao invés de cargas menores espalhadas pela rede.

A nomenclatura dos equipamentos segue sua ordem de aparição pela rede, guiando-se pela ordenação dos postes (barras identificadas). Deste modo, o primeiro transformador, verificado no poste P001, será chamado de Trafo01, enquanto o próximo, visto no poste P003, será o Trafo02. Isto ocorrerá sucessivamente até o Trafo35. O Trafo31, entretanto, não estará presente na rede final, uma vez que atualmente não está conectado à rede (seu poste neste caso seria o P143).

Na Tabela 5 é mostrado um excerto da tabela contendo a identificação e potência nominal de cada transformador, bem como o respectivo poste ao qual está acoplado, conforme inseridos no programa.

ID	Código	Pot. Trafo (kVA)	Código Poste
1	Trafo01	225	P001
2	Trafo02	112,5	P003
3	Trafo03	30	P021
4	Trafo04	30	P029
5	Trafo05	30	P031

Tabela 5 – Excerto da tabela de transformadores e seus respectivos postes alocados.

Fonte: Acervo pessoal.

5.5.8 Modelagem das cargas

Em conformidade com o que foi elucidado anteriormente, as cargas serão elementos adicionados no secundário de cada transformador, representando a potência suprida pelos mesmos. Assim, haverá uma carga para cada unidade transformadora.

No programa, as cargas são definidas, para este caso, como sendo de corrente constante, o modelo padrão do software, com seu valor sendo definido a partir dos ativos e reativos, conforme pode ser visto na Figura 28. Para o caso estudado, as cargas assumirão valores relativos a potência nominal de seu respectivo transformador, significando uma determinada taxa de utilização do mesmo.

A fim de se definir um fator de potência em comum para todas as cargas, serão utilizadas como base as medições realizadas com um analisador de rede no bloco Edilberto Parigot de Souza Filho, das dependências da Ufac. Nesta coleta, pode-se verificar um fator de potência médio de aproximadamente 0,8566, sendo este o valor então adotado para todas as cargas.

Serão realizadas três simulações diferentes, representando o comportamento da rede em situações de carga leve, média e pesada. A diferença entre cada simulação se dá apenas nas cargas, onde serão consideradas diferentes taxas de utilização dos transformadores. Para carga leve, será considerado um uso de 60% da potência nominal do transformador, enquanto nas cargas média e pesada serão utilizados, respectivamente, fatores de 80% e 100% de utilização.

Figura 28 – Interface do SINAPgrid para inserção (a) dos parâmetros de uma carga e (b) dos dados de potência de uma carga.

🔳 Edição de C	Carga	Х	📧 Edição de 🤇	Carga			×
/ Confirmer 💙 Concellar (🕐 Betirar			🗆 🗸 Confirmar 🗙 Cancelar 🤣 Retirar				
V commu			Carga Curva	Gráfico			
Carga Curva	Gráfico		Tipo		Número de Pa	tamares	
Código	Carga01		Editar Carga To	tal V	24 horas (1 po	onto)	~
Fases	Trifásica V ABC	\sim	Pontos da Curv	/a			
Mandala.	Country country to		Patamar 00:00 a 24:00	P 0.1541880	Q 0.0928766		
Modelo	Corrente constante	~		0.15 11000			
Classe	Residencial	\sim					
Grupo A 🗌	Cliente Prioritário						
Demanda							
🔿 Curva típica	a 💿 Curva própria		P: MW. O: MV	Ar			

Fonte: Criada pelo programa SINAPgrid.

A nomenclatura adotada se baseia no respectivo transformador da carga. Logo, a Carga01 está acoplada ao Trafo01 e assim por diante. Conforme explicado anteriormente, a Carga31 não está presente devido ao seu respectivo transformador não estar conectado. Para fins de simulação, todas as cargas adotadas serão constantes.

Os valores das potências aparente (S_C), ativa (P_C) e reativa (Q_C) da carga são obtidas a partir do conjunto de Equações 26:

$$S_{C} = S_{T} \cdot FU$$

$$P_{C} = S_{C} \cdot FP$$

$$Q_{C} = S_{C}^{2} - P_{C}^{2}$$
(26)

Sendo S_T a potência nominal do transformador correspondente, FU o fator de utilização (0,6 para leve, 0,8 para média e 1,0 para pesada) e FP o fator de potência adotado (no caso, 0,8566).

Nas Tabelas 6, 7 e 8 seguem excertos das tabelas mostrando as respectivas potências das três simulações distintas, com os dados de potência ativa e reativa utilizados nas cargas após a realização dos devidos cálculos.

Tabela 6 – Excerto da tabela de potências aparentes, ativas e reativas para carga leve.

ID	Código	S _T (kVA)	Carga leve		
			S _C (kVA)	P _C (kW)	Q _C (kVAr)
1	Carga01	225	135	115,641	69,65744123
2	Carga02	112,5	67,5	57,8205	34,82872062
3	Carga03	30	18	15,4188	9,287658831
4	Carga04	75	45	38,547	23,21914708
5	Carga05	30	18	15,4188	9,287658831

Fonte: Acervo pessoal.

ID	Código	S _T (kVA)	Carga média		
			S _C (kVA)	P _C (kW)	Q _C (kVAr)
1	Carga01	225	180	154,188	92,87658831
2	Carga02	112,5	90	77,094	46,43829415
3	Carga03	30	24	20,5584	12,38354511
4	Carga04	75	60	51,396	30,95886277
5	Carga05	30	24	20,5584	12,38354511

Tabela 7 – Excerto da tabela de potências aparentes, ativas e reativas para carga média.

Fonte: Acervo pessoal.

Tabela 8 – Excerto da tabela de potências aparentes, ativas e reativas para carga pesada.

m	Código	S _T (kVA)	Carga pesada		
ID			S _C (kVA)	P _C (kW)	Q _C (kVAr)
1	Carga01	225	225	192,735	116,0957354
2	Carga02	112,5	112,5	96,3675	58,04786769
3	Carga03	30	30	25,698	15,47943138
4	Carga04	75	75	64,245	38,69857846
5	Carga05	30	30	25,698	15,47943138

Fonte: Acervo pessoal.

6 RESULTADOS

Após concluída toda a etapa de modelagem, tem-se então na Figura 29 a representação visual da rede com a qual o trabalho virá a ser realizado através das simulações.

Destaca-se que a figura não é alterada ao longo dos diferentes testes executados.

Figura 29 – Representação da rede de distribuição primária da Ufac construída no programa SINAPgrid com os devidos elementos alocados.

Fonte: Criada pelo programa SINAPgrid.

Com o intuito de realizar simulações para três casos distintos, foram salvos três arquivos diferentes, cada um com os devidos valores de potência ativa e reativa em suas cargas, conforme obtidos previamente.

Os perfis de tensão e fator de potência serão verificados utilizando a ferramenta "Mapas temáticos". Nesta, é possível analisar o comportamento da tensão ou do fator de potência de acordo com a distância percorrida em um determinado caminho entre dois pontos. A mesma simulação será repetida para cada caso analisado, utilizando os mesmos percursos.

Foram determinados dois caminhos distintos, ambos partindo da Subestação do Tangará até um ponto próximo da chave. Os trechos pelos quais os dois trajetos maiores serão traçados são dados nas tabelas abaixo, onde se registram os barramentos de início e fim dos trechos na ordem em que são percorridos, o comprimento dos mesmos e o comprimento total até o ponto de destino.

É importante relembrar que o barramento da subestação do Tangará está fisicamente muito mais longe do que o representado nas figuras (1402,24 m em linha reta), embora sua distância do ponto de vista do software reflita esta distância real. Este será o ponto inicial de ambos os caminhos.

O primeiro caminho é composto por 37 barramentos e 36 trechos, descritos na Tabela 9. O ponto final do trecho é o poste P074, onde está conectado um dos lados da chave.

Barramento Início	Barramento Fim	Distância Trecho (m)	Distância Total (m)
Subestação_Tangará	P018	1402,2	1402,2
P018	P021	78	1480,2
P021	P020	38,5	1518,7
P020	P019	43,3	1562
P019	P017	3,6	1565,6
P017	P013	9,4	1575
P013	P012	30,3	1605,3
P012	P011	30,1	1635,4
P011	P010	30	1665,4
P010	P009	30,1	1695,5
P009	P008	8,5	1704
P008	P007	30,5	1734,5
P007	P031	31,6	1766,1
P031	P032	35,4	1801,5
P032	P033	41	1842,5
P033	P034	28,3	1870,8
P034	P035	33,9	1904,7
P035	P040	19,7	1924,4
P040	P041	20,6	1945
P041	P042	31,3	1976,3
P042	P043	44,7	2021
P043	P044	41	2062

Tabela 9 – Descrição dos trechos componentes do primeiro caminho e suas distâncias.

P044	P047	35,5	2097,5
P047	P050	29	2126,5
P050	P051	33,6	2160,1
P051	P052	36,3	2196,4
P052	P053	37,3	2233,7
P053	P054	26,6	2260,3
P054	P064	26,4	2286,7
P064	P067	33,8	2320,5
P067	P068	35,7	2356,2
P068	P069	34	2390,2
P069	P071	34	2424,2
P071	P072	31	2455,2
P072	P073	31,1	2486,3
P073	P074	33,4	2519,7

Fonte: Criado com auxílio do programa SINAPgrid.

Na simulação, o trajeto pode ser visualizado na Figura 30, sendo destacado em ciano.

Figura 30 – Primeiro caminho adotado na análise da rede de distribuição primária da Ufac.

Fonte: Criada pelo programa SINAPgrid.

Barramento Início	Barramento Fim	Distância Trecho (m)	Distância total (m)
Subestação_Tangará	P018	1402,2	1402,2
P018	P021	78	1480,2
P021	P020	38,5	1518,7
P020	P019	43,3	1562
P019	P022	30,2	1592,2
P022	P023	38,7	1630,9
P023	P024	39	1669,9
P024	P025	39	1708,9
P025	P026	9,5	1718,4
P026	P147	39,1	1757,5
P147	P145	45	1802,5
P145	P144	29	1831,5
P144	P134	31,1	1862,6
P134	P133	35	1897,6
P133	P130	31,8	1929,4
P130	P125	31,1	1960,5
P125	P124	41,6	2002,1
P124	P123	28,1	2030,2
P123	P122	36	2066,2
P122	P117	34,7	2100,9
P117	P116	33,9	2134,8
P116	P115	53	2187,8
P115	P112	22,9	2210,7
P112	P110	43,8	2254,5
P110	P109	45	2299,5
P109	P107	37,2	2336,7
P107	P103	37	2373,7
P103	P102	31	2404,7

Tabela 10 – Descrição dos trechos componentes do segundo caminho e suas distâncias.

P102	P101	20,6	2425,3
P101	P088	23,3	2448,6
P088	P086	26,9	2475,5
P086	P084	37,5	2513
P084	P083	35	2548
P083	P082	36	2584
P082	P075	34	2618
P075	P076	14,7	2632,7
P076	P077	43,4	2676,1
P077	P078	41,3	2717,4
P078	P079	39,1	2756,5
P079	P080	27	2783,5
P080	P081	10,2	2793,7

Fonte: Criado com auxílio do programa SINAPgrid.

É possível visualizar a trajetória descrita acima a partir na Figura 31 fornecida a seguir (o trecho aparece novamente em ciano).

Figura 31 – Segundo caminho adotado na análise da rede de distribuição primária da Ufac.

Fonte: Criada pelo programa SINAPgrid.
A chave é outro ponto de análise importante. Em todo o processo ela permanecerá aberta, como ocorre na rede de distribuição da Ufac. Entretanto, para fins analíticos, será feita uma demonstração com ela fechada, verificando as alterações consequentes.

É de se notar que a ferramenta de mapas temáticos tem como pré-requisito a verificação do fluxo de carga da rede. Logo, em cada situação este virá a ser o primeiro passo. O fluxo de carga permite verificar a situação de cada elemento da rede, desde barramentos e trechos a transformadores e cargas. Aqueles descritos com a cor verde estão funcionando de forma adequada, enquanto os amarelos estão em situação precária. Componentes em vermelho, porém, descrevem condições críticas. Em todas as simulações, porém, as cargas são representadas com a cor branca.

6.1 Carga leve

Retomando o que foi descrito em seção anterior, na situação de carga leve foram consideradas cargas de FP = 0,8566 com potência nominal igual a 60% do valor do seu respectivo transformador. Realizando o passo de rodar o fluxo de carga, tem-se a Figura 32.

Figura 32 – Fluxo de carga da rede de distribuição primária da Ufac em carga leve.

Fonte: Criada pelo programa SINAPgrid.

Como é possível notar, todos os elementos da rede aparentam trabalhar em condições adequadas. A chave é devidamente representada como aberta no fluxo gerado.

6.2 Carga média

Em carga média, a simulação ocorrerá de forma análoga ao caso anterior, seguindo o mesmo procedimento lógico, porém com as cargas possuindo um fator de uso de 80% do valor nominal dos transformadores. O fluxo de carga obtido é mostrado na Figura 33.

Figura 33 – Fluxo de carga da rede de distribuição primária da Ufac em carga média.

Fonte: Criada pelo programa SINAPgrid.

Novamente, os equipamentos da rede estão operando adequadamente, embora seu fator de uso tenha sido aumentado. Os mapas temáticos de perfil de tensão e fator de potência que serão feitos, porém, revelam que há alterações no comportamento da rede de um caso para outro. Verificar-se-á, então, a diferença nos valores resultantes na Seção 6.4.

6.3 Carga pesada

Por fim, foi realizada a simulação considerando um fator de uso de 100% da capacidade nominal dos transformadores, representando assim situação de carga pesada.

O fluxo de carga deste caso é descrito na Figura 34.

Figura 34 – Fluxo de carga da rede de distribuição primária da Ufac em carga pesada.

Fonte: Criada pelo programa SINAPgrid.

É possível notar que, diferente dos cenários anteriores, todos os transformadores estão em condição de operação precária. Caso permaneçam muito tempo neste estado, isto pode implicar avarias aos equipamentos ou à rede em si.

6.4 Comparação entre as simulações com diferentes níveis de carga

Conforme descrito anteriormente, a ferramenta de mapas temáticos de perfil de tensão e perfil de fator de potência serão utilizados nas três simulações expostas acima, utilizando dois caminhos já definidos nas tabelas 9 e 10. Esses mapas temáticos serão comparados entre si para verificar as diferenças na queda de tensão e FP nos casos de carga leve, média e pesada. Ao utilizar ambas funções do software, ele nos permite exportar os dados em um arquivo com extensão .csv, que pode ser lido pelo programa Excel. Assim, é possível obter uma tabela que descreve, em cada barra, a tensão (em pu) ou o fator de potência e se o mesmo é capacitivo ou indutivo.

O SINAPgrid ainda dá a liberdade para que aqueles aspectos sejam observados em diferentes horários, porém ao se trabalhar com uma carga constante isto de torna irrelevante, optando-se então por adotar um horário qualquer.

Em seguida, são verificados os mapas temáticos de perfil de tensão e fator de potência, verificando a flutuação destes valores ao longo do trajeto. O processo é repetido duas vezes para cada simulação, um para cada caminho.

Por fim, serão realizadas comparações entre as perdas técnicas averiguadas pelo programa nos três casos distintos, em que o software gera uma tabela contendo tais informações.

6.4.1 Perfis de tensão e fator de potência no primeiro trecho

Após obter os arquivos dos perfis de tensão e fator de potência para o primeiro trajeto em carga leve, média e pesada, os dados são compilados e condensados na Tabela 11.

Dormo		Carga Leve		Carga Média		Carga Pesada	
Багга	Dist(m)	Vmin(pu)	FPmin	Vmin(pu)	FPmin	Vmin(pu)	FPmin
Subestação_Tangará	0	1	0,8466	1	0,8422	1	0,838
P018	1402,2	0,9887	0,8472	0,9849	0,843	0,9811	0,8389
P021	1480,2	0,988	0,8472	0,984	0,8431	0,9801	0,839
P020	1518,7	0,9877	0,8472	0,9836	0,8431	0,9795	0,839
P019	1562	0,9874	0,8473	0,9832	0,8431	0,979	0,839
P017	1565,6	0,9874	0,8473	0,9832	0,8431	0,9789	0,8391
P013	1575	0,9873	0,8473	0,9831	0,8431	0,9789	0,8391
P012	1605,3	0,9872	0,8473	0,9829	0,8431	0,9787	0,8391
P011	1635,4	0,9871	0,8473	0,9828	0,8432	0,9785	0,8391
P010	1665,4	0,987	0,8473	0,9826	0,8432	0,9783	0,8391
P009	1695,5	0,9868	0,8473	0,9824	0,8432	0,9781	0,8391
P008	1704	0,9868	0,8473	0,9824	0,8432	0,978	0,8391
P007	1734,5	0,9867	0,8474	0,9822	0,8432	0,9778	0,8392

Tabela 11 – Perfis de tensão e fator de potência no primeiro caminho quanto ao uso da carga.

P031	1766,1	0,9866	0,8475	0,9821	0,8435	0,9777	0,8395
P032	1801,5	0,9865	0,8475	0,982	0,8434	0,9775	0,8394
P033	1842,5	0,9864	0,8475	0,9818	0,8434	0,9773	0,8394
P034	1870,8	0,9863	0,8475	0,9817	0,8434	0,9771	0,8394
P035	1904,7	0,9862	0,8473	0,9816	0,8432	0,977	0,8391
P040	1924,4	0,9861	0,8473	0,9815	0,8432	0,9769	0,8391
P041	1945	0,9861	0,8473	0,9814	0,8432	0,9768	0,8391
P042	1976,3	0,986	0,8473	0,9813	0,8432	0,9767	0,8391
P043	2021	0,9859	0,8473	0,9812	0,8432	0,9765	0,8391
P044	2062	0,9858	0,8473	0,981	0,8432	0,9763	0,8391
P047	2097,5	0,9857	0,8472	0,9809	0,843	0,9762	0,8389
P050	2126,5	0,9856	0,847	0,9809	0,8428	0,9761	0,8386
P051	2160,1	0,9856	0,847	0,9808	0,8428	0,976	0,8386
P052	2196,4	0,9855	0,847	0,9807	0,8428	0,9758	0,8386
P053	2233,7	0,9854	0,847	0,9806	0,8427	0,9757	0,8385
P054	2260,3	0,9854	0,8476	0,9805	0,8435	0,9757	0,8395
P064	2286,7	0,9854	0,8487	0,9805	0,845	0,9757	0,8413
P067	2320,5	0,9854	0,8487	0,9805	0,8449	0,9756	0,8413
P068	2356,2	0,9854	0,8487	0,9805	0,8449	0,9756	0,8413
P069	2390,2	0,9853	0,8487	0,9805	0,8449	0,9756	0,8413
P071	2424,2	0,9853	0,8493	0,9805	0,8454	0,9756	0,8417
P072	2455,2	0,9853	0,8493	0,9805	0,8454	0,9756	0,8417
P073	2486,3	0,9853	0,8493	0,9805	0,8454	0,9756	0,8417
P074	2519,7	0,9853	-	0,9805	-	0,9756	-

Fonte: Criado com auxílio do programa SINAPgrid.

Como todos os fatores de potência, com exceção do verificado no poste P074 (por ser lido pelo software como nulo ou sem carga), se apresentaram indutivos, optou-se por excluir tais colunas da tabela para que fique mais suscinta.

É possível observar, nos Gráficos 1 e 2, a variação de tensão e fator de potência ao longo do percurso nos três casos simulados, com cada barramento sendo representado por seu respectivo ponto.

Gráfico 1 – Perfil de tensão do primeiro caminho quanto ao uso da carga.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Gráfico 2 – Perfil de fator de potência do primeiro caminho quanto ao uso da carga.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

É importante notar que o comportamento dos primeiros 1400 metros se dá antes mesmo do barramento localizado na entrada do campus, obtendo geralmente característica linear nesta etapa.

Como é possível observar, os valores se alteram, embora não de forma tão significativa. A tensão apresenta maior queda antes do primeiro barramento dentro do campus, porém o valor final mais baixo obtido é de 97,56% da tensão de entrada em carga pesada. Isto representa para o estudo uma queda de tensão pouco significativa desde a saída da subestação do Tangará.

Da mesma forma, o fator de potência possui uma flutuação baixa na faixa de valores apresentados. A variação é pouco significativa, com a maior faixa de valores, no caso de carga pesada, tendo diferença menor que 0,004.

É importante notar, porém, que embora todos os elementos estejam funcionando de forma adequada em carga leve e média, o fator de potência ainda varia em valores próximos a 0,85, o qual é considerado baixo segundo padrões da Aneel. Embora o FP utilizado para as cargas seja por si só um valor considerado baixo, é importante ressaltar que a base utilizada para a adoção do mesmo foi tirada de medições reais realizadas dentro do campus.

Comparando os gráficos dos três casos entre si, é notório que a curva descrita nestes se assemelha em forma, alterando-se apenas os valores. Todavia, essas alterações mesmo entre os casos são pouco consideráveis, levando em conta que os valores se alteram em questão de milésimos ou poucos centésimos.

É de se esperar que o caso com menor queda de tensão e maior fator de potência seja o de carga leve, enquanto o oposto é verificado em carga pesada. Isto se dá devido a diferença entre os três residir basicamente em alterações nos valores das cargas, o que dificilmente resultaria em alterações da curva de tensão ou fator de potência.

6.4.2 Perfis de tensão e fator de potência no segundo trecho

Para o segundo caminho, o procedimento adotado é análogo ao caso anterior, o que fornecerá, portanto, uma nova tabela e dois novos gráficos comparando os casos de carga leve, média e pesada.

		Carga Leve		Carga Média		Carga Pesada	
Barra	Dist(m)	Vmin(pu)	FPmin	Vmin(pu)	FPmin	Vmin(pu)	FPmin
Subestação_Tangará	0	1	0,8466	1	0,8422	1	0,838
P018	1402,2	0,9887	0,8472	0,9849	0,843	0,9811	0,8389
P021	1480,2	0,988	0,8472	0,984	0,8431	0,9801	0,839
P020	1518,7	0,9877	0,8472	0,9836	0,8431	0,9795	0,839
P019	1562	0,9874	0,8473	0,9832	0,8431	0,979	0,839
P022	1592,2	0,9873	0,8472	0,983	0,8431	0,9788	0,839
P023	1630,9	0,9871	0,8472	0,9828	0,8431	0,9785	0,839
P024	1669,9	0,9869	0,8473	0,9826	0,8431	0,9783	0,839
P025	1708,9	0,9868	0,8473	0,9824	0,8431	0,978	0,839
P026	1718,4	0,9868	0,8472	0,9823	0,843	0,9779	0,8389
P147	1757,5	0,9866	0,8471	0,9821	0,843	0,9777	0,8389
P145	1802,5	0,9864	0,8472	0,9819	0,843	0,9774	0,8389
P144	1831,5	0,9863	0,8471	0,9817	0,8429	0,9772	0,8388
P134	1862,6	0,9862	0,8471	0,9816	0,8429	0,977	0,8388
P133	1897,6	0,9861	0,8468	0,9814	0,8425	0,9768	0,8382
P130	1929,4	0,986	0,8468	0,9813	0,8425	0,9766	0,8382
P125	1960,5	0,9859	0,8466	0,9812	0,8423	0,9765	0,838
P124	2002,1	0,9858	0,8466	0,981	0,8423	0,9763	0,838
P123	2030,2	0,9857	0,8466	0,9809	0,8423	0,9761	0,838
P122	2066,2	0,9856	0,8466	0,9808	0,8423	0,976	0,838
P117	2100,9	0,9855	0,8467	0,9806	0,8423	0,9758	0,838
P116	2134,8	0,9854	0,8469	0,9805	0,8426	0,9757	0,8384
P115	2187,8	0,9853	0,8469	0,9804	0,8426	0,9754	0,8384
P112	2210,7	0,9852	0,8469	0,9803	0,8426	0,9754	0,8384
P110	2254,5	0,9851	0,8467	0,9801	0,8424	0,9752	0,8382
P109	2299,5	0,985	0,8467	0,98	0,8423	0,975	0,838
P107	2336,7	0,9849	0,8467	0,9799	0,8423	0,9749	0,8381
P103	2373,7	0,9849	0,847	0,9798	0,8427	0,9748	0,8385
P102	2404,7	0,9848	0,8466	0,9798	0,8423	0,9747	0,8379
P101	2425,3	0,9848	0,8466	0,9797	0,8423	0,9747	0,838
P088	2448,6	0,9848	0,8466	0,9797	0,8423	0,9746	0,838

Tabela 12 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso da carga.

P086	2475,5	0,9847	0,8463	0,9796	0,8419	0,9746	0,8375
P084	2513	0,9847	0,8467	0,9796	0,8425	0,9745	0,8382
P083	2548	0,9847	0,8467	0,9796	0,8425	0,9745	0,8382
P082	2584	0,9846	0,8467	0,9795	0,8425	0,9744	0,8382
P075	2618	0,9846	0,8467	0,9795	0,8425	0,9744	0,8382
P076	2632,7	0,9846	0,8467	0,9795	0,8425	0,9743	0,8382
P077	2676,1	0,9846	0,8467	0,9794	0,8425	0,9743	0,8382
P078	2717,4	0,9845	0,8456	0,9794	0,8409	0,9743	0,8363
P079	2756,5	0,9845	0,8456	0,9794	0,8409	0,9742	0,8363
P080	2783,5	0,9845	0,8456	0,9794	0,8409	0,9742	0,8363
P081	2793,7	0,9845	0,8456	0,9794	0,8409	0,9742	0,8363

Fonte: Criado com auxílio do programa SINAPgrid.

No caso desta tabela, todos os fatores de potência descritos são indutivos, sendo tal informação removida da tabela para fins de deixá-la mais resumida.

Os Gráficos 3 e 4 foram retirados das informações contidas na Tabela 12.

Gráfico 3 – Perfil de tensão do segundo caminho quanto ao uso da carga.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Gráfico 4 – Perfil de fator de potência do segundo caminho quanto ao uso da carga.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Podem ser verificados, a partir da análise das características descritas nos Gráficos 3 e 4, resultados semelhantes ao do primeiro. A curva do FP possui formato diferente, embora novamente a variação de valores novamente sejam pequenas tanto entre o mínimo e máximo de uma simulação, como entre as simulações em si.

A relação entre carga pesada, maior queda de tensão e menor fator de potência pode ser visualizada mais uma vez. Quando comparado ao primeiro trajeto, a queda de tensão é mais elevada, embora a diferença não venha a ser tão significativa. Esse comportamento é esperado, uma vez que este caminho mede 2793,7 m, sendo maior que o primeiro, de 2519,7 m.

6.4.3 Perdas técnicas por segmento

Para esta etapa, será utilizada a ferramenta de perdas técnicas, que analisa a energia injetada e o total que é perdido, seja nos cabos, medidores ou outros equipamentos. Como não foram incluídos medidores nesta simulação, as perdas se tratarão basicamente das verificadas nos cabos e transformadores.

Ao utilizar a função, é possível escolher a unidade de energia dos resultados. Para este estudo, optou-se por verificar as perdas em kWh.

É de se esperar que as perdas aumentem conforme mais energia seja injetada, aumentando em valor absoluto conforme a carga aumente. Deve-se então levar em conta as perdas percentuais, as quais também são fornecidas pelo programa, a fim de se obter uma comparação mais precisa.

Na Figura 35 são fornecidas as informações quanto a perdas técnicas para a simulação da rede em situação de carga leve.

Figura 35 – Tabela do programa SINAPgrid representando as perdas técnicas em carga leve.

reroas por segmento (kwn)							
Segmento	Energia Injetada	Perda	IPTS (%)	PPT (%)			
SDMT(perdas adicionais)	47.520,340	0,000	0,000	0,000			
SDMT: cabo	47.520,340	636,372	1,339	1,339			
SDMT: medidor	46.548,234	0,000	0,000	0,000			
Total	-	972,106	-	2,046			
Perdas Adicionais	-	0,000	-	0,000			

Fonte: Criada pelo programa SINAPgrid.

Em carga média, conforme previsto anteriormente, pode-se notar na Figura 36 que há uma maior injeção de energia e maiores perdas. Entretanto, ao se analisar de forma percentual, é possível notar que as diferenças são relativamente próximas do caso simulado anteriormente.

Figura 36 – Tabela do programa SINAPgrid representando as perdas técnicas em carga média.

Perdas por Segmento (kWh)				
Segmento	Energia Injetada	Perda	IPTS (%)	PPT (%)
SDMT(perdas adicionais)	62.955,149	0,000	0,000	0,000
SDMT: cabo	62.955,149	1.131,318	1,797	1,797
SDMT: medidor	61.488,097	0,000	0,000	0,000
Total	-	1.467,052	-	2,330
Perdas Adicionais	-	0,000	-	0,000

Fonte: Criada pelo programa SINAPgrid.

Por fim, tem-se a tabela das medições para carga pesada dada na Figura 37. Após sua análise, os três casos são comparados a fim de confirmar ou contestar as previsões de mudança de comportamento entre um caso e outro realizadas no início deste tópico.

Perdas por Segmento (kWh)				
Segmento	Energia Injetada	Perda	IPTS (%)	PPT (%)
SDMT(perdas adicionais)	78.238,909	0,000	0,000	0,000
SDMT: cabo	78.238,909	1.767,667	2,259	2,259
SDMT: medidor	76.135,508	0,000	0,000	0,000
Total	-	2.103,401	-	2,688
Perdas Adicionais	-	0,000	-	0,000

Figura 37 – Tabela do programa SINAPgrid representando as perdas técnicas em carga pesada.

Fonte: Criada pelo programa SINAPgrid.

Conforme apuradas as características da rede nas três condições distintas, é possível comparar de forma mais precisa as diferenças em cada uma. Em geral, os padrões registrados são semelhantes entre si, novamente com variações apenas nos valores. Da mesma forma constatada anteriormente, as perdas técnicas aumentam conforme o fator de uso se torna maior. A conclusão mais aceitável a se chegar é de que o aumento das perdas se deve ao fato de haver maior energia injetada, uma vez que as perdas percentuais (PPT) permanecem relativamente próximas nas três simulações. A diferença observada de 2,046% em carga leve para 2,688% em carga pesada representa um aumento de apenas 0,642%.

6.5 Simulação de alterações na rede

A seguir, serão feitas duas novas simulações, cada uma representando uma suposta alteração na dinâmica da rede trabalhada. Na primeira, verificar-se-ão as consequências do fechamento da chave seccionadora do anel, que no cenário base permanece aberta a todo momento. A segunda simulação incluirá a alocação de capacitores, com a chave desta vez sendo mantida em aberto. Serão repetidos os procedimentos de medida e averiguação do perfil de tensão e fator de potência nos mesmos trajetos anteriores. A partir das mudanças notadas, serão obtidos resultados quanto a necessidade ou não de tais mudanças serem, por fim, adotadas.

Com o objetivo de evitar repetitividade ou acréscimo de informações desnecessárias, aquelas duas alterações serão representadas apenas no caso de carga média, uma vez que os outros casos, conforme vistos, possuem comportamento semelhante, apenas com alterações nos valores alcançados.

6.5.1 Cenário com chave seccionadora fechada

Após fechada a chave da rede localizada entre os postes P074 e P075, os procedimentos de análise dos perfis de tensão e fator de potência são os mesmos das primeiras simulações, em que o primeiro passo consiste em executar o fluxo de potência e, em seguida, medir os mesmos em dois trechos distintos. Estes serão os mesmos utilizados outrora, com leve alteração.

Figura 38 – Fluxo de carga da rede de distribuição primária da Ufac em carga média com chave seccionadora fechada.

Fonte: Criada pelo programa SINAPgrid.

Para a análise dos perfis de tensão e fator de potência, serão utilizados os mesmos dois trajetos distintos anteriores, com as cargas tendo taxa de utilização média (80%). A alteração citada anteriormente consiste em, no primeiro caminho, remover o poste P074 do percurso, fazendo com que o poste final seja o P073 e o trajeto total seja de 2486,3 metros. Como o fator de potência no P074 já apresentava FP nulo e nenhuma variação de tensão na simulação anterior em carga média, espera-se que tal modificação para este caso não venha a causar alterações significativas. Neste caso, os dados do poste P074 também serão removidos da análise do caso com chave aberta, a fim de manter a equivalência entre as situações.

Uma vez exportados os dados, concretiza-se a Tabela 13 dada a seguir, que permite comparar o comportamento do primeiro trecho com a chave aberta e fechada, quando se colocam as informações lado a lado.

Barra	Dist(m)	Carga Méc Abe	lia Chave rta	Carga Médi Fecha	ia Chave da
		Vmin(pu)	FPmin	Vmin(pu)	FPmin
Subestação_Tangará	0	1	0,8422	1	0,8422
P018	1402,2	0,9849	0,843	0,9849	0,843
P021	1480,2	0,984	0,8431	0,984	0,8431
P020	1518,7	0,9836	0,8431	0,9836	0,8431
P019	1562	0,9832	0,8431	0,9832	0,8431
P017	1565,6	0,9832	0,8431	0,9832	0,8431
P013	1575	0,9831	0,8431	0,9831	0,8431
P012	1605,3	0,9829	0,8431	0,9829	0,8431
P011	1635,4	0,9828	0,8432	0,9828	0,8431
P010	1665,4	0,9826	0,8432	0,9826	0,8431
P009	1695,5	0,9824	0,8432	0,9824	0,8431
P008	1704	0,9824	0,8432	0,9824	0,8431
P007	1734,5	0,9822	0,8432	0,9822	0,843
P031	1766,1	0,9821	0,8435	0,9821	0,8432
P032	1801,5	0,982	0,8434	0,9819	0,8431
P033	1842,5	0,9818	0,8434	0,9817	0,8432
P034	1870,8	0,9817	0,8434	0,9816	0,8432
P035	1904,7	0,9816	0,8432	0,9814	0,8429
P040	1924,4	0,9815	0,8432	0,9814	0,8429
P041	1945	0,9814	0,8432	0,9813	0,8429
P042	1976,3	0,9813	0,8432	0,9812	0,8429
P043	2021	0,9812	0,8432	0,981	0,8429
P044	2062	0,981	0,8432	0,9808	0,8429
P047	2097,5	0,9809	0,843	0,9807	0,8427
P050	2126,5	0,9809	0,8428	0,9806	0,8425

Tabela 13 – Perfis de tensão e fator de potência no primeiro caminho quanto à chaveseccionadora.

P051	2160,1	0,9808	0,8428	0,9805	0,8425
P052	2196,4	0,9807	0,8428	0,9804	0,8425
P053	2233,7	0,9806	0,8427	0,9803	0,8424
P054	2260,3	0,9805	0,8435	0,9802	0,8429
P064	2286,7	0,9805	0,845	0,9802	0,8433
P067	2320,5	0,9805	0,8449	0,9801	0,843
P068	2356,2	0,9805	0,8449	0,9801	0,843
P069	2390,2	0,9805	0,8449	0,9801	0,843
P071	2424,2	0,9805	0,8454	0,9801	0,8418
P072	2455,2	0,9805	0,8454	0,98	0,8418
P073	2486,3	0,9805	0,8454	0,98	0,8418

Fonte: Criado com auxílio do programa SINAPgrid.

Igualmente ao último caso, a noção acerca do fator de potência ser indutivo em todos os barramentos foi omitida para evitar redundâncias. O mesmo será repetido ao analisar o segundo caminho.

Os dados da Tabela 13 podem ser então visualizados nos Gráficos 5 e 6.

Gráfico 5 – Perfil de tensão do primeiro caminho quanto à chave seccionadora.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Gráfico 6 – Perfil de fator de potência do primeiro caminho quanto à chave seccionadora.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Pode-se constatar algumas pequenas diferenças entre as os resultados obtidos, como a curva de fator de potência e uma maior queda de tensão. Ainda assim, não há nenhuma alteração significativa, uma vez que as diferenças entre os valores das situações foram muito baixas.

Repete-se então o mesmo processo no segundo trajeto, baseado na comparação feita.

Barra	Dist(m)	Carga Média Chave Aberta		Carga Média Chave Fechada	
		Vmin(pu)	FPmin	Vmin(pu)	FPmin
Subestação_Tangará	0	1	0,8422	1	0,8422
P018	1402,2	0,9849	0,843	0,9849	0,843
P021	1480,2	0,984	0,8431	0,984	0,8431
P020	1518,7	0,9836	0,8431	0,9836	0,8431
P019	1562	0,9832	0,8431	0,9832	0,8431
P022	1592,2	0,983	0,8431	0,983	0,8432
P023	1630,9	0,9828	0,8431	0,9828	0,8432
P024	1669,9	0,9826	0,8431	0,9826	0,8432
P025	1708,9	0,9824	0,8431	0,9824	0,8432

 Tabela 14 – Perfis de tensão e fator de potência no segundo caminho quanto à chave seccionadora.

P026	1718,4	0,9823	0,843	0,9824	0,8431
P147	1757,5	0,9821	0,843	0,9822	0,8432
P145	1802,5	0,9819	0,843	0,982	0,8432
P144	1831,5	0,9817	0,8429	0,9818	0,8432
P134	1862,6	0,9816	0,8429	0,9817	0,8432
P133	1897,6	0,9814	0,8425	0,9816	0,8427
P130	1929,4	0,9813	0,8425	0,9814	0,8427
P125	1960,5	0,9812	0,8423	0,9813	0,8425
P124	2002,1	0,981	0,8423	0,9812	0,8425
P123	2030,2	0,9809	0,8423	0,9811	0,8425
P122	2066,2	0,9808	0,8423	0,981	0,8425
P117	2100,9	0,9806	0,8423	0,9809	0,8425
P116	2134,8	0,9805	0,8426	0,9808	0,8429
P115	2187,8	0,9804	0,8426	0,9806	0,8429
P112	2210,7	0,9803	0,8426	0,9806	0,8429
P110	2254,5	0,9801	0,8424	0,9805	0,8427
P109	2299,5	0,98	0,8423	0,9804	0,8426
P107	2336,7	0,9799	0,8423	0,9803	0,8426
P103	2373,7	0,9798	0,8427	0,9802	0,8432
P102	2404,7	0,9798	0,8423	0,9802	0,8427
P101	2425,3	0,9797	0,8423	0,9801	0,8427
P088	2448,6	0,9797	0,8423	0,9801	0,8427
P086	2475,5	0,9796	0,8419	0,9801	0,8422
P084	2513	0,9796	0,8425	0,9801	0,8438
P083	2548	0,9796	0,8425	0,98	0,8438
P082	2584	0,9795	0,8425	0,98	0,8438
P075	2618	0,9795	0,8425	0,98	0,8438
P076	2632,7	0,9795	0,8425	0,98	0,8425
P077	2676,1	0,9794	0,8425	0,9799	0,8425
P078	2717,4	0,9794	0,8409	0,9799	0,8409
P079	2756,5	0,9794	0,8409	0,9799	0,8409
P080	2783,5	0,9794	0,8409	0,9799	0,8409
P081	2793,7	0,9794	0,8409	0,9799	0,8409

Fonte: Criado com auxílio do programa SINAPgrid.

Analogamente ao caso anterior, as informações podem ser melhor visualizadas comparativamente nos Gráficos 7 e 8.

Gráfico 7 – Perfil de tensão do segundo caminho quanto à chave seccionadora.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Gráfico 8 – Perfil de fator de potência do segundo caminho quanto à chave seccionadora.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Neste segundo caso, é possível perceber, novamente, uma alteração no gráfico do perfil de fator de potência quanto a seu formato, e novamente com pouca diferença, contida ainda na casa dos milésimos.

Após feita a análise comparativa dos mesmos dois caminhos em situações de carga média com a chave seccionadora aberta e fechada, é coerente concluir que as mudanças decorrentes da ação de fechamento da chave são irrelevantes, não apresentando alterações significativas nos perfis de tensão e fator de potência. Mesmo o aumento da queda de tensão não se viu ultrapassar 1 milésimo de pu (em torno de 0,1% da tensão), e a curva do FP, não chegou próximo de um valor satisfatório que justifique a adoção de tal manobra.

Assim, as simulações executadas auxiliaram na conclusão de que o fechamento da chave seccionadora não representa alteração significativa que aprimore a situação da rede de distribuição do campus.

6.5.2 Cenário com alocação de capacitores

Retornando à rede de média carga com chave aberta, a segunda proposta trata de alocar bancos de capacitores na mesma. Para isto será utilizada a ferramenta apropriadamente denominada "Alocação de Capacitor". Com seu uso, é possível determinar quantos bancos capacitivos tem-se disponível em estoque, bem como o valor de reativos de cada unidade. É possível também fornecer diferentes números de capacitores com valores de potência reativa distintos, assemelhando-se a um possível inventário real.

Existem opções de configuração para o uso ou não de certas restrições, como o fator de potência mínimo, distância mínima entre capacitores, ou limite da potência reativa total dos bancos. Além disto, é possível ajustar os valores de tais restrições.

Para esta demonstração, o fator de potência mínimo configurado será 0,92, sem limitação de distância entre as unidades e limite de potência reativa de 10 MVAr. O caso analisado contará com um inventário de 20 unidades, cada uma de 50 KVAr.

A interface da ferramenta é mostrada na Figura 39.

Figura 39 – Janela do programa SINAPgrid para alocação dos capacitores adotados e seus respectivos parâmetros.

🖪 Alocação	de Capacitor p	ara Circuitos Primários Radiais	23
8 💥 🕈	Alocar	Capacitores 🗸 Confirmar 🗙 Cancelar 📇 Exportar Lista 🥐 Ajuda	a
Configuração	Capacitores E	xistentes	
Restrições			
Fator de p	otência mínimo	0.92	
Distância n	nínima entre doi:	s capacitores em série (m)	
Limitar pot	ência reativa to	tal dos capacitores (MVAr) 10	
Opções			
Remover o	apacitores exist	tentes 🗌 Sempre ligado	
Alocar cap	acitores soment	e no tronco	
Estoque: Cap	acitores Dispon	íveis	
Índice	kvar/unid.	Unidades	
_ 1	50.0	20	

Fonte: Criada pelo programa SINAPgrid.

Após alocados os capacitores, o programa decidiu utilizar apenas 13 das 20 unidades. Como não foi definida uma distância mínima, algumas dessas foram alocadas nos mesmos postes. Os resultados aparecem no fluxo de potência da Figura 40.

Figura 40 – Fluxo de carga da rede de distribuição primária da Ufac em carga média com alocação de capacitores.

Fonte: Criada pelo programa SINAPgrid.

Das 13 unidades, duas foram conectadas ao mesmo poste (P077), sendo movidos na simulação para permitir a visualização de ambos (por padrão o programa os sobrepõe, impedindo a visualização de múltiplos capacitores acoplados ao mesmo poste). As demais unidades foram fixadas em estruturas distintas. Na Tabela 15 é descrito a que barra cada banco está conectado.

ID	Código	Barra
1	Cap_01	P077
2	Cap_02	P059
3	Cap_03	Trafo35_Subestação
4	Cap_04	P141
5	Cap_05	P002
6	Cap_06	P077
7	Cap_07	P056
8	Cap_08	P137
9	Cap_09	P103
10	Cap_10	P047
11	Cap_11	P107
12	Cap_12	P034
13	Cap_13	P117

Tabela 15 – Bancos de capacitores alocados e suas respectivas barras.

Fonte: Criado com auxílio do programa SINAPgrid.

A barra denominada Trafo35_Subestação é o código do barramento que representa o secundário do transformador 35 (localizado na subestação próxima ao bloco Clóvis Barros França.

Como pode-se observar, das 12 barras, 11 possuem apenas uma unidade capacitiva, enquanto o poste P077 tem 2 unidades acopladas. O programa não julgou necessário o uso das outras 7 unidades do inventário, sendo então consideradas sobressalentes.

Por fim, serão realizadas as medições com os mesmos percursos anteriores para verificar os perfis da nova rede adquirida. Será repetido, então, o processo de exportação de dados para tabelas, em que poderá ser comparado o cenário simulado em média carga antes e depois dos capacitores serem alocados. Os dados coletados da primeira trajetória são dados na Tabela 16.

Barra	Dist(m)	Carga Média sem Capacitores		Carga Média com alocação de Capacitores	
		Vmin(pu)	FPmin	Vmin(pu)	FPmin
Subestação_Tangará	0	1	0,8422	1	0,9285
P018	1402,2	0,9849	0,843	0,9868	0,93
P021	1480,2	0,984	0,8431	0,9861	0,9301
P020	1518,7	0,9836	0,8431	0,9857	0,9307
P019	1562	0,9832	0,8431	0,9853	0,9307
P017	1565,6	0,9832	0,8431	0,9853	0,93
P013	1575	0,9831	0,8431	0,9852	0,93
P012	1605,3	0,9829	0,8431	0,9851	0,9301
P011	1635,4	0,9828	0,8432	0,9849	0,9301
P010	1665,4	0,9826	0,8432	0,9848	0,9301
P009	1695,5	0,9824	0,8432	0,9847	0,9301
P008	1704	0,9824	0,8432	0,9846	0,9301
P007	1734,5	0,9822	0,8432	0,9845	0,9293
P031	1766,1	0,9821	0,8435	0,9844	0,9312
P032	1801,5	0,982	0,8434	0,9843	0,9328
P033	1842,5	0,9818	0,8434	0,9841	0,9328
P034	1870,8	0,9817	0,8434	0,984	0,9328
P035	1904,7	0,9816	0,8432	0,9839	0,9284
P040	1924,4	0,9815	0,8432	0,9838	0,9284
P041	1945	0,9814	0,8432	0,9838	0,9284
P042	1976,3	0,9813	0,8432	0,9837	0,9284
P043	2021	0,9812	0,8432	0,9836	0,9285
P044	2062	0,981	0,8432	0,9834	0,9285
P047	2097,5	0,9809	0,843	0,9833	0,9387
P050	2126,5	0,9809	0,8428	0,9833	0,9247
P051	2160,1	0,9808	0,8428	0,9832	0,9247
P052	2196,4	0,9807	0,8428	0,9831	0,9247
P053	2233,7	0,9806	0,8427	0,983	0,927
P054	2260,3	0,9805	0,8435	0,983	0,9301

Tabela 16 – Perfis de tensão e fator de potência no primeiro caminho quanto ao uso decapacitores.

P064	2286,7	0,9805	0,845	0,983	0,845
P067	2320,5	0,9805	0,8449	0,983	0,845
P068	2356,2	0,9805	0,8449	0,9829	0,845
P069	2390,2	0,9805	0,8449	0,9829	0,845
P071	2424,2	0,9805	0,8454	0,9829	0,8455
P072	2455,2	0,9805	0,8454	0,9829	0,8455
P073	2486,3	0,9805	0,8454	0,9829	0,8455
P074	2519,7	0,9805	-	0,9829	-

Fonte: Criado com auxílio do programa SINAPgrid.

Analogamente à primeira análise, o poste P074 na simulação não é considerado como um ponto por onde passa o fluxo de potência, tendo FP nulo por tal razão. Todos os fatores de potência são indutivos, o que levou à decisão de mais uma vez remover tal informação da tabela.

Seguem abaixo os Gráficos 9 e 10 representando as informações contidas na Tabela 16.

Gráfico 9 – Perfil de tensão do primeiro caminho quanto ao uso de capacitores.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Gráfico 10 – Perfil de fator de potência do primeiro caminho quanto ao uso de capacitores.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Observando os gráficos, é fácil perceber a diferença causada pela atuação dos bancos de capacitores, cumprindo a função almejada por estes: correção do fator de potência e melhoria do perfil de tensão.

O perfil de tensão, embora tenha sido aprimorado com a redução da queda de tensão apresentada, ainda mostra uma pequena melhora, com alterações de apenas milésimos de pu, o que representaria uma melhoria menor que 0,3% da mesma.

Por outro lado, é possível notar que o fator de potência possui alterações significativas de um caso para o outro, com os capacitores cumprindo sua função de elevar o fator de potência da rede aos parâmetros colocados. É também perceptível que, ao longo da rota, o FP no segundo caso sofre uma acentuada queda a partir do poste P064, uma vez que o capacitor mais próximo (localizado no poste P056) não atua diretamente além do ponto P054, de onde sai a ramificação em que está conectado. A partir deste, o Gráfico 10 e a Tabela 16 mostram um fator de potência quase idêntico ao cenário sem o uso de capacitores.

Em seguida, é analisado o segundo caso, realizando os mesmos comparativos entre os dois cenários.

Barra	Dist(m)	Carga Média sem Capacitores		Carga Média com alocação de Capacitores	
		Vmin(pu)	FPmin	Vmin(pu)	FPmin
Subestação_Tangará	0	1	0,8422	1	0,9285
P018	1402,2	0,9849	0,843	0,9868	0,93
P021	1480,2	0,984	0,8431	0,9861	0,9301
P020	1518,7	0,9836	0,8431	0,9857	0,9307
P019	1562	0,9832	0,8431	0,9853	0,9307
P022	1592,2	0,983	0,8431	0,9852	0,9315
P023	1630,9	0,9828	0,8431	0,985	0,9315
P024	1669,9	0,9826	0,8431	0,9848	0,9315
P025	1708,9	0,9824	0,8431	0,9846	0,9316
P026	1718,4	0,9823	0,843	0,9846	0,9347
P147	1757,5	0,9821	0,843	0,9844	0,9364
P145	1802,5	0,9819	0,843	0,9842	0,9364
P144	1831,5	0,9817	0,8429	0,9841	0,9383
P134	1862,6	0,9816	0,8429	0,9839	0,9383
P133	1897,6	0,9814	0,8425	0,9838	0,9289
P130	1929,4	0,9813	0,8425	0,9837	0,9289
P125	1960,5	0,9812	0,8423	0,9836	0,9349
P124	2002,1	0,981	0,8423	0,9834	0,9349
P123	2030,2	0,9809	0,8423	0,9833	0,9349
P122	2066,2	0,9808	0,8423	0,9832	0,9349
P117	2100,9	0,9806	0,8423	0,9831	0,9349
P116	2134,8	0,9805	0,8426	0,983	0,9313
P115	2187,8	0,9804	0,8426	0,9829	0,9313
P112	2210,7	0,9803	0,8426	0,9828	0,9313
P110	2254,5	0,9801	0,8424	0,9827	0,9365
P109	2299,5	0,98	0,8423	0,9826	0,9399
P107	2336,7	0,9799	0,8423	0,9825	0,9399
P103	2373,7	0,9798	0,8427	0,9824	0,9364
P102	2404,7	0,9798	0,8423	0,9823	0,9204

Tabela 17 – Perfis de tensão e fator de potência no segundo caminho quanto ao uso de
capacitores.

P101	2425,3	0,9797	0,8423	0,9823	0,9204
P088	2448,6	0,9797	0,8423	0,9823	0,9204
P086	2475,5	0,9796	0,8419	0,9822	0,9289
P084	2513	0,9796	0,8425	0,9822	0,9696
P083	2548	0,9796	0,8425	0,9822	0,9696
P082	2584	0,9795	0,8425	0,9821	0,9696
P075	2618	0,9795	0,8425	0,9821	0,9696
P076	2632,7	0,9795	0,8425	0,9821	0,9696
P077	2676,1	0,9794	0,8425	0,9821	0,9697
P078	2717,4	0,9794	0,8409	0,982	0,8409
P079	2756,5	0,9794	0,8409	0,982	0,841
P080	2783,5	0,9794	0,8409	0,982	0,841
P081	2793,7	0,9794	0,8409	0,982	0,841

Fonte: Criado com auxílio do programa SINAPgrid.

A representação gráfica da Tabela 17 é mostrada nos Gráficos 11 e 12.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Gráfico 12 – Perfil de fator de potência do segundo caminho quanto ao uso de capacitores.

Fonte: Criado pelo Excel com auxílio de dados fornecidos pelo programa SINAPgrid.

Outra vez é observado que o limite mínimo do fator de potência de 0,92 é obedecido até onde há a atuação direta dos bancos na rede. Desta vez, em certos pontos, o FP chega próximo de 0,97, apresentando características ainda melhores que o do primeiro trecho, onde nenhuma barra mostrou fator de potência acima de 0,95.

O que pode ser tirado dos resultados é que a curva característica de tensão não sofre alterações significativas, exceto por uma menor queda de tensão observada entre a simulação feita e a mesma para a rede padrão de média carga.

Entretanto, ao olhar para o perfil de fator de potência é notória a melhoria que a adoção de bancos de capacitores representa para o sistema. A queda na curva após certo ponto se dá ao fato de o caminho ir além de pontos onde os bancos foram alocados. Assim, o trecho até os postes que possuem bancos de capacitores apresenta a melhoria esperada, enquanto a parte além desses postes permanece aproximadamente com as características anteriores.

Por fim, tem-se novamente o relatório de perdas técnicas para o caso de média carga com o uso de bancos capacitivos, fornecido na Figura 41.

Figura 41 – Tabela do programa SINAPgrid representando as perdas técnicas por segmento em carga média com alocação de capacitores.

Perdas por Segmento (kWh)						
Segmento	Energia Injetada	Perda	IPTS (%)	PPT (%)		
SDMT(perdas adicionais)	62.944,380	0,000	0,000	0,000		
SDMT: cabo	62.944,380	928,646	1,475	1,475		
SDMT: medidor	61.680,001	0,000	0,000	0,000		
Total	-	1.264,380	-	2,009		
Perdas Adicionais	-	0,000	-	0,000		

Fonte: Criada pelo programa SINAPgrid.

Comparando ao cenário sem a alocação dos bancos, conclui-se que a adição de bancos de capacitores representa, realmente, uma redução nas perdas do sistema igual a 202,672 kWh, com o total de perdas passando de 1467,052 kWh para 1264,380 kWh. Entretanto, considerando o consumo padrão de uma instituição do porte da Ufac, tal quantia se mostra não viável levando em consideração o investimento envolvido, tanto de adição quanto manutenção das unidades.

7 CONSIDERAÇÕES FINAIS E CONCLUSÃO

A proposta inicial do trabalho era a de estudo e análise da rede elétrica de distribuição do campus Rio Branco da Ufac, para isso contando com duas possíveis alterações a serem adotadas na mesma. A primeira foi o fechamento da chave seccionadora presente na rede, enquanto a segunda era a alocação de capacitores para correção do perfil de tensão. As simulações presentes no trabalho buscaram averiguar a situação atual da rede e após tais medidas sendo hipoteticamente adotadas, embasando assim o argumento de suas viabilidades. Embora a conclusão para ambas seja a de inviabilidade técnica, o processo de obtenção de tais respostas abre portas para futuras análises mais minuciosas, bem como a repetição do procedimento para diferentes estudos.

O comportamento simulado ao adotar-se a primeira proposta, de fechamento da chave seccionadora, forneceu respostas similares ao cenário base. Frente à pouca significância das diferenças nos perfis de tensão e fator de potência, esta medida foi considerada inviável.

Na segunda proposta, de alocação de capacitores, é notória uma melhoria maior quando comparado ao primeiro caso. A queda de tensão é reduzida quando comparado ao caso base sem os bancos capacitivos, e o perfil de fator de potência mostra grande melhoria, trazendo resultados satisfatórios na correção do FP do sistema. Para um veredito, porém, fez-se necessário verificar algum parâmetro de comparação técnico, sendo escolhido para isso a redução de perdas técnicas por segmento.

Ao se comparar as duas simulações, verifica-se que as perdas caem de 1467,052 kWh (sem capacitores) para 1264,380 kWh (com capacitores), apresentando uma redução de 202,672 kWh. Para um consumidor do porte da Ufac, porém, esta redução não foi considerada significativa o suficiente, tornando assim o processo inviável. Isso foi decidido sem a averiguação dos investimentos necessários, como custo das unidades e da mão de obra envolvida na instalação dos bancos, pois o trabalho não se propôs a ter enfoque nos aspectos econômicos. Tendo isto em vista, é possível que, ao se levar em conta possíveis multas que a instituição pague devido ao seu FP atual ter apresentado comportamento abaixo do exigido pela Aneel, a correção obtida pela adoção dos capacitores se mostre produtiva. Ainda assim, este lado econômico não foi o objeto de estudo pretendido.

Outra etapa a qual o projeto se propôs a verificar foi a presença de problemas notórios no comportamento da rede elétrica do campus. Nas simulações de caso base, nenhum elemento presenciou algum tipo de situação de operação grave, o que levou a concluir que não era necessária nenhuma medida de correção imediata na mesma.

Como aprendizado da ferramenta SINAPgrid, o trabalho mostrou-se satisfatório, com o uso de diferentes funções distintas para obtenção de uma análise precisa possível. Uma vez que o programa tem como foco o setor de distribuição, as simulações de uma rede de distribuição primária provaram-se um teste favorável, embora ainda assim laborioso. O software, por ser fechado ao público, necessitou o fornecimento de uma chave de acesso por parte da empresa Sinapsis Energia, cedida ao Ceeac. Devido a isso, não houve acesso a muitos outros manuais de operação ou guias além dos inclusos na própria plataforma, requisitando tentativas e erros em situações não descritas por estes.

Deve-se ter em mente também, ao observar os resultados mostrados pelas simulações, que estas tiveram restrições. Buscou-se realiza-las da forma mais fiel possível ao modelo real, com as informações adquiridas até o momento de desenvolvimento deste trabalho. Na prática, porém, alguns comportamentos diferenciam-se do verificado por sua natureza não ideal e mais complexa do que o levado em conta.

Destes aspectos, destaca-se o fato de que os transformadores deveriam ser medidos com um analisador de carga que defina seu comportamento. Nos resultados obtidos, levaram-se em conta cargas concentradas nos respectivos secundários de cada estação transformadora, representando uso equivalente à potência nominal do seu respectivo transformador. As taxas de uso foram adotadas de forma a ver três cenários constantes distintos de exigência dos transformadores, enquanto um modelo real possui uma variação ao longo do tempo. Da mesma forma, nem todo transformador é exigido da mesma forma, com alguns (geralmente os mais próximos dos centros consumidores) sendo mais utilizados que outros.

O consumo não foi o único aspecto simplificado para as representações no programa. O fator de potência também possui natureza inconstante, variando conforme aparelhos sejam ligados e desligados, tendo comportamento distinto em cada unidade transformadora. O valor adotado de 0,8566 foi escolhido com base em medições reais averiguados, tendo assim base em um comportamento real, porém sendo mais complexa do que o que foi mostrado.

Tais fatores são os principais separadores entre o que se obteve no presente estudo e uma simulação mais exata. Caso futuramente o mesmo processo seja refeito com dados mais fiéis ao comportamento real do sistema, possíveis problemas venham a surgir ou tornar-se mais visíveis. Entretanto, até onde o projeto propôs a realização da análise, não há nenhum defeito grave observado no objeto de estudo.

As demais partes das simulações apresentam maior fidelidade à sua contraparte real, como a localização dos postes e distâncias dos trechos. O georreferenciamento desenvolvido, conforme detalhado em Trindade (2019), foi um alicerce forte para esta simulação. Poder

retornar uma visualização que configure, em sua maioria, algo fiel ao objeto estudado é um comprovante da praticabilidade do programa e da metodologia adotados.

Por fim, é possível descrever as simulações obtidas como representações satisfatórias da rede de distribuição do campus Rio Branco da Universidade Federal do Acre. Embora as duas medidas averiguadas para melhoria do perfil de tensão não se mostraram impactantes o suficiente para serem levadas adiante, é interessante verificar como as mesmas ainda causam alterações, mesmo que pouco significativas, e como tal estudo pode vir a ser aprofundado.

7.1 Propostas de trabalhos futuros

Como produto distinto de trabalhos realizados anteriormente, o estudo pode vir a ser utilizado de base para propostas semelhantes no futuro. Estas podem ter a finalidade de replicar o que foi feito, analisar o processo de uso da plataforma SINAPgrid (que possui uma biblioteca limitada de referências no quesito de uso das funções), ou aprofundar o estudo realizado.

Repetições do processo desenvolvido podem incluir adaptações para diferentes redes ou locais simulados. Tais adaptações podem incluir, mas não são limitados à adição ou remoção de elementos da rede, quando comparados aos presentes na da Ufac. A descrição das etapas de modelagem da rede descritas ao longo do Capítulo 5 devem auxiliar com isto.

Para aperfeiçoamento do que foi desenvolvido, existe a possibilidade de refazer o trabalho com a inclusão de mais informações que tornem as simulações ainda mais realistas. Dentre o que pode ser feito, é possível utilizar curvas de carga e medições do uso dos transformadores individualmente, obtidos com analisadores de carga. Assim, é excluída a necessidade de simular três cenários distintos com diferentes usos dos transformadores e cargas proporcionais aos mesmos. Com isto, as estações transformadoras possuirão comportamento distintos entre si e ao longo do tempo, construindo um modelo mais próximo do real.

Da mesma forma, o fator de potência é um aspecto que varia ao longo do tempo e em cada transformador. Com uma simulação que leve isto em conta, será notória a maior fidelidade ao modelo real. É possível ainda que com parâmetros distintos entre cada unidade transformadora, defeitos na rede sejam revelados, podendo ser analisados com maior exatidão.

Por fim, é possível simular outras mudanças na rede e o comportamento que a mesma terá após estas serem adotadas, avaliando suas viabilidades. O programa possui diversas ferramentas não utilizadas que possam vir a auxiliar neste processo, exigindo maior exploração do que foi descrito ao longo deste trabalho. Ainda assim, o processo descrito pode vir a auxiliar nisso.

BIBLIOGRAFIA

ALMEIDA, A. M. F. de; BRAZ, H. D. M.; PAMPLONA, F. M. P.; SOUZA, B. A. de. Planejamento integrado de bancos de capacitores e reguladores de tensão em redes de distribuição. VII CBQEE, Santos (SP), v.02, p.1-6, 2007.

ALMEIDA, Angelo Márcio Formiga de. Otimização multiobjetivo e lógica *fuzzy* aplicados ao planejamento integrado de bancos de capacitores e reguladores de tensão em redes de distribuição. 2009. 126 f. Tese (Doutorado em Engenharia Elétrica) – Centro de Engenharia Elétrica e Informática, Universidade Federal de Campina Grande, Campina Grande (PB).

ANEEL – Agência Nacional de Energia Elétrica. Resolução Aneel nº 456, de 29 de novembro de 2000. Disponível em: http://www.mme.gov.br/documents/10584/1985241/Resolucao%20456%20aneel.pdf>. Acessado em 08 de fevereiro de 2019.

ANEEL – Agência Nacional de Energia Elétrica. Procedimento de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – PRODIST. Módulo 8 – Qualidade de energia Elétrica. Revisão 10. 2017.

BRASIL. Decreto nº 479, de 20 de março de 1992, que altera: Art. 7° do Decreto n° 62.724, de 17 de maio de 1968. Brasília (DF), 1992.

BRITO, Sander Bryan Felicio da Cruz. Envio de informação pela rede elétrica: estudo de caso do alimentador da Universidade Federal do Acre. 2018. 130 f. Trabalho de conclusão de curso (Bacharelado em Engenharia Elétrica) – Centro de Ciências Exatas e Tecnológicas (CCET), Universidade Federal do Acre (Ufac), Rio Branco (AC).

CARVALHO, Ricardo S. Análise harmônica em redes de distribuição de energia elétrica. 2013. 101 f. Trabalho de conclusão de curso (Bacharelado em Engenharia Elétrica) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos (SP).

COELHO, Bruno Miguel Moreira. Classificação de tipologia de rede da EDP Distribuição. 2012. 85 f. Dissertação (Mestrado Integrado em Engenharia Eletrotécnica e de Computadores) – Faculdade de Engenharia da Universidade do Porto (FEUP).

DUQUE, Marina Borges. Fluxo de carga trifásico para análise de distorções harmônicas em redes de distribuição de energia elétrica. 2013. 99 f. Dissertação (Mestrado em Engenharia Elétrica) – Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas (SP).

FELBER, Luis Antonio. Regulamentação de tensão em subestações de distribuição de energia elétrica. 2010. 123 f. Dissertação (Mestrado em Ciências em Engenharia Elétrica) – Universidade Federal de Itajubá, Itajubá (MG).

FRAGOAS, Alexandre Graciolli. Estudo de caso do uso de bancos de capacitores em uma rede de distribuição primária – Indicativos da sua viabilidade econômica. 2008. 63 f. Trabalho de conclusão de curso – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos (SP).

GARCIA, F. R. Harmônicos em sistemas elétricos de potência. In: IESA Projetos, Equipamentos e Montagens S.A. 1997. Disponível em: <http://www.iesa.com.br/institucional/pdf/pdf_reativa/ap_harmonicosSEPCap.pdf>. Acessado em 08 de fevereiro de 2019.

GENTE DE OPINIÃO. Engenheiros do Centro de Excelência de Energia do Acre visitam a usina hidrelétrica Jirau. Publicado em 30 de junho de 2016. Disponível em: ">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-e-meio-ambiente-internacional/engenheiros-do-centro-de-excelencia-de-energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-acre-visitam-a-usina-hidreletrica-jirau>">https://www.gentedeopiniao.com.br/energia-do-

GRAINGER, J. J.; STEVENSON, W. D. Power system analysis. Singapore: McGraw-Hill, 1994.

HAFFNER, S.; PEREIRA, L. A.; GASPERIN, L. V.; BARRETO, L. Alocação de bancos de capacitores em redes de distribuição de energia visando eliminar violações de tensão. Revista Controle e Automação, v.20, n.4, p. 546-563, out. – dez. 2009.

KAGAN, N.; OLIVEIRA, C. C. B. de; ROBBA, E. J. Introdução aos sistemas de distribuição de energia elétrica. 1. ed. São Paulo: Blucher, 2005.

KAGAN, N.; OLIVEIRA, C. C. B. Reconfiguração de redes de distribuição de energia elétrica através de ferramenta para solução de problemas de decisão com múltiplos objetivos e incertezas. SBA Controle & Automação, v.9, n.1, p. 18-30, jan. – abr. 1998.

MONTICELLI, Alcir José. Fluxo de carga em redes de energia elétrica. Introdução aos sistemas de distribuição de energia elétrica. São Paulo: Edgard Blücher, 1983.

NEXANS BRASIL – Brings energy to life. Cabos de Alumínio Nu – CA (Série AWG). Disponível em: https://www.nexans.com.br/eservice/Brazil-pt_BR/navigate_213622/Cabos_de_Alum_nio_Nu_CA_Serie_AWG_.html. Acessado em 10 de abril de 2019.

PEREIRA, Marcelo Adorni. Fluxo de potência em sistemas de distribuição de energia elétrica. 1993. 74 f. Tese (Mestrado em Engenharia Elétrica) – Universidade Estadual de Campinas, Campinas (SP).

PLATAFORMA SINAPGRID – Plataforma para a análise de redes elétricas. SINAPgrid. Disponível em: http://www.sinapsisenergia.com. Acessado em 24 de setembro de 2018.

POMILIO, J. A.; DECKMANN, S. M. Condicionamento de energia elétrica e dispositivos FACTS. 2009. Cap. 1, p. 1-26. Apostila do Curso de Condicionamento de Energia Elétrica e Dispositivos FACTS – Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas (SP).

POMILIO, J. A.; DECKMANN, S. M. Avaliação da qualidade da energia elétrica. 2018. Apostila do Curso de Avaliação da Qualidade da Energia Elétrica – Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, Campinas (SP).

PORTELA, K. T.; ROSA, J. da S. Estudo dos efeitos dos harmônicos gerados por residências na rede de distribuição secundária. 2016. 93 f. Trabalho de conclusão de curso (Bacharelado em Engenharia Elétrica) – Departamento Acadêmico de Eletrotécnica, Universidade Tecnológica Federal do Paraná, Curitiba (PR).

REIS, J. C. S. dos; KIKUCHI, G. T. Banco de capacitores para correção de fator de potência em indústria. 2015. 45 f. Trabalho de conclusão de curso – Faculdade de Engenharias, Arquitetura e Urbanismo (FEAU), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos (SP).

SAADAT, Hadi. Power system analysis. New York: WCB/McGraw-Hill, 1999.

SANTOS, Tiago Manuel Ferreira dos. Configuração em malha vs. configuração radial – Desempenhos e perspectivas de evolução. 2013. 84 f. Dissertação (Mestrado em Engenharia Electrotécnica e de Computadores) – Instituto Superior Técnico Lisboa.

SENAI – Serviço Nacional de Aprendizado Industrial; CST – Companhia Siderúrgica de Tubarão. Eletrotécnica – Elétrica. Espírito Santo, 1996.

TRINDADE, Taynara Bastos. Georreferenciamento da rede de distribuição elétrica da Universidade Federal do Acre – Campus Rio Branco. 2019. 90 f. Trabalho de conclusão de curso (Bacharelado em Engenharia Elétrica) – Centro de Ciências Exatas e Tecnológicas (CCET), Universidade Federal do Acre (Ufac), Rio Branco (AC).

UNIVERSIDADE FEDERAL DO ACRE. Ufac em números 2017. Rio Branco, 2018. 104 f.

VARIZ, Abilio Manuel. Cálculo do fluxo de harmônicas em sistemas trifásicos utilizando o método de injeção de correntes. 2006. 239 f. Tese (Doutorado em Ciências em Engenharia Elétrica) – Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (RJ).

WEG. Transformadores. Disponível em: http://ecatalog.weg.net/tec_cat/tech_transformadores.asp>. Acessado em: 10 de abril de 2019.

ANEXOS

ANEXO A - Tabela com coordenadas geográficas dos postes

Segue a tabela com as respectivas coordenadas de longitude e latitude dos componentes da rede aérea de distribuição do campus Rio Branco da Universidade Federal do Acre.

ID	Código	UTM X	UTM Y
1	P001	624557	8899285
2	P002	624574	8899266
3	P003	624547	8899244
4	P004	624589	8899295
5	P005	624610	8899316
6	P006	624628	8899336
7	P007	624637	8899349
8	P008	624616	8899371
9	P009	624619	8899379
10	P010	624611	8899408
11	P011	624612	8899438
12	P012	624615	8899468
13	P013	624632	8899493
14	P014	624660	8899466
15	P015	624667	8899475
16	P016	624680	8899469
17	P017	624637	8899501
18	P018	624673	8899531
19	P019	624634	8899503
20	P020	624620	8899544
21	P021	624614	8899582
22	P022	624609	8899486
23	P023	624571	8899479
24	P024	624532	8899478
25	P025	624493	8899477
26	P026	624490	8899468
27	P027	624516	8899467
28	P028	624545	8899439
29	P029	624569	8899415
30	P030	624590	8899394
31	P031	624667	8899319
32	P032	624693	8899295
33	P033	624722	8899266
----	------	--------	---------
34	P034	624741	8899245
35	P035	624766	8899222
36	P036	624776	8899252
37	P037	624825	8899244
38	P038	624868	8899246
39	P039	624898	8899240
40	P040	624774	8899204
41	P041	624766	8899185
42	P042	624742	8899165
43	P043	624713	8899131
44	P044	624685	8899101
45	P045	624661	8899129
46	P046	624641	8899149
47	P047	624658	8899078
48	P048	624675	8899066
49	P049	624700	8899049
50	P050	624632	8899065
51	P051	624601	8899052
52	P052	624568	8899037
53	P053	624532	8899027
54	P054	624507	8899018
55	P055	624500	8899051
56	P056	624491	8899051
57	P057	624491	8899087
58	P058	624460	8899089
59	P059	624426	8899093
60	P060	624406	8899094
61	P061	624384	8899095
62	P062	624386	8899118
63	P063	624387	8899130
64	P064	624483	8899007
65	P065	624485	8898993
66	P066	624517	8898907
67	P067	624451	8898996
68	P068	624416	8898989
69	P069	624382	8898990
70	P070	624382	8898994
71	P071	624348	8898990

72	P072	624317	8898990
73	P073	624291	8899007
74	P074	624265	8899028
75	P075	624237	8899039
76	P076	624244	8899052
77	P077	624258	8899093
78	P078	624253	8899134
79	P079	624250	8899173
80	P080	624223	8899174
81	P081	624221	8899184
82	P082	624203	8899039
83	P083	624167	8899039
84	P084	624132	8899040
85	P085	624148	8899027
86	P086	624095	8899046
87	P087	624097	8899046
88	P088	624070	8899056
89	P089	624038	8899040
90	P090	624008	8899024
91	P091	623975	8899012
92	P092	623945	8898994
93	P093	623905	8898949
94	P094	623868	8898901
95	P095	623920	8898869
96	P096	623916	8898853
97	P097	623912	8898838
98	P098	623915	8898807
99	P099	623827	8898851
100	P100	623816	8898804
101	P101	624049	8899066
102	P102	624036	8899082
103	P103	624028	8899112
104	P104	624017	8899111
105	P105	623987	8899109
106	P106	623953	8899107
107	P107	624029	8899149
108	P108	624065	8899156
109	P109	624033	8899186
110	P110	624057	8899224

111	P111	624040	8899233
112	P112	624088	8899255
113	P113	624036	8899269
114	P114	623994	8899275
115	P115	624109	8899264
116	P116	624137	8899309
117	P117	624160	8899334
118	P118	624184	8899318
119	P119	624212	8899294
120	P120	624243	8899294
121	P121	624261	8899315
122	P122	624185	8899358
123	P123	624210	8899384
124	P124	624233	8899400
125	P125	624257	8899434
126	P126	624215	8899463
127	P127	624176	8899489
128	P128	624141	8899517
129	P129	624097	8899520
130	P130	624280	8899455
131	P131	624271	8899463
132	P132	624245	8899490
133	P133	624311	8899462
134	P134	624346	8899461
135	P135	624357	8899436
136	P136	624356	8899401
137	P137	624346	8899399
138	P138	624341	8899373
139	P139	624341	8899342
140	P140	624344	8899314
141	P141	624345	8899282
142	P142	624309	8899279
143	P143	624311	8899241
144	P144	624377	8899463
145	P145	624406	8899465
146	P146	624425	8899477
147	P147	624451	8899465
148	P148	624476	8899506
149	P149	624464	8899536

150	P150	624441	8899597		
151	P151	624420	8899646		
152	P152	624365	8899761		
153	P153	624357	8899778		
154	P154	624330	8899784		
155	P155	623379	8899087		
156	P156	623358	8899057		
157	P157	623344	8899035		
158	P158	623327	8899014		
159	P159	623301	8898993		
160	P160	623360	8899570		
161	P161	623337	8899568		
162	P162	623321	8899556		
163	P163	623335	8899536		
164	P164	623339	8899620		
165	P165	623313	8899702		
166	P166	623220	8899658		
167	P167	623141	8899601		
168	P168	623073	8899567		
169	P169	623006	8899504		
170	P170	622977	8899465		
171	P171	623019	8899373		
172	P172	623023	8899330		
173	P173	623018	8899320		
174	P174	624535	8898605		
175	P175	624532	8898643		
176	P176	624486	8898645		

ANEXO B – Tabela de transformadores e seus respectivos postes

Segue a tabela contendo as informações acerca dos transformadores verificados na rede de distribuição estudada, explicitando suas potências nominais e os postes aos quais estão acoplados na simulação feita.

ID	Código	Pot. Trafo (kVA)	Código Poste
1	Trafo01	225	P001
2	Trafo02	112,5	P003
3	Trafo03	30	P021
4	Trafo04	30	P029
5	Trafo05	30	P031
6	Trafo06	75	P036
7	Trafo07	150	P039
8	Trafo08	150	P046
9	Trafo09	112,5	P049
10	Trafo10	30	P052
11	Trafo11	75	P056
12	Trafo12	225	P059
13	Trafo13	75	P063
14	Trafo14	45	P066
15	Trafo15	150	P070
16	Trafo16	30	P073
17	Trafo17	150	P077
18	Trafo18	225	P081
19	Trafo19	225	P086
20	Trafo20	45	P091
21	Trafo21	30	P099
22	Trafo22	150	P106
23	Trafo23	225	P108
24	Trafo24	45	P110
25	Trafo25	75	P114

26	Trafo26	225	P119
27	Trafo27	112,5	P129
28	Trafo28	Trafo28 75	
29	Trafo29	150	P141
30	Trafo30	150	P142
31	Trafo31 ^[1]	150	P143
32	Trafo32	45	P145
33	Trafo33	75	P153
34	Trafo34	30	Subestação
35	Trafo35	300	Subestação

^[1] – O transformador indicado pelo código Trafo31 está presente fisicamente, porém desconectado da rede. Para fins de simulação, este não se faz presente e sua potência nominal é considerada nula.

ANEXO C – Tabelas de potências dos transformadores e cargas para diferentes níveis de uso

Abaixo é fornecida uma tabela contendo informações acerca das potências aparentes, ativas e reativas das cargas em diferentes níveis de uso descritos como cargas leve, média e pesada. No primeiro caso, os valores consideram um fator de utilização igual a 0,6. A segunda parte apresenta-os para FU = 0.8. Por fim, a carga pesada exibe as potências no cenário onde o fator de uso é unitário, indicando que o transformador está trabalhando à plena capacidade.

m	Código	S (1-77A)	Carga leve			Carga média			Carga pesada		
ш		ST(KVA)	S _C (kVA)	P _C (kW)	Q _C (kVAr)	S _C (kVA)	P _C (kW)	Q _C (kVAr)	S _C (kVA)	P _C (kW)	Q _C (kVAr)
1	Carga01	225	135	115,641	69,65744123	180	154,188	92,87658831	225	192,735	116,0957354
2	Carga02	112,5	67,5	57,8205	34,82872062	90	77,094	46,43829415	112,5	96,3675	58,04786769
3	Carga03	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
4	Carga04	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
5	Carga05	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
6	Carga06	75	45	38,547	23,21914708	60	51,396	30,95886277	75	64,245	38,69857846
7	Carga07	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
8	Carga08	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
9	Carga09	112,5	67,5	57,8205	34,82872062	90	77,094	46,43829415	112,5	96,3675	58,04786769
10	Carga10	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
11	Carga11	75	45	38,547	23,21914708	60	51,396	30,95886277	75	64,245	38,69857846
12	Carga12	225	135	115,641	69,65744123	180	154,188	92,87658831	225	192,735	116,0957354
13	Carga13	75	45	38,547	23,21914708	60	51,396	30,95886277	75	64,245	38,69857846
14	Carga14	45	27	23,1282	13,93148825	36	30,8376	18,57531766	45	38,547	23,21914708
15	Carga15	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692

16	Carga16	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
17	Carga17	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
18	Carga18	225	135	115,641	69,65744123	180	154,188	92,87658831	225	192,735	116,0957354
19	Carga19	225	135	115,641	69,65744123	180	154,188	92,87658831	225	192,735	116,0957354
20	Carga20	45	27	23,1282	13,93148825	36	30,8376	18,57531766	45	38,547	23,21914708
21	Carga21	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
22	Carga22	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
23	Carga23	225	135	115,641	69,65744123	180	154,188	92,87658831	225	192,735	116,0957354
24	Carga24	45	27	23,1282	13,93148825	36	30,8376	18,57531766	45	38,547	23,21914708
25	Carga25	75	45	38,547	23,21914708	60	51,396	30,95886277	75	64,245	38,69857846
26	Carga26	225	135	115,641	69,65744123	180	154,188	92,87658831	225	192,735	116,0957354
27	Carga27	112,5	67,5	57,8205	34,82872062	90	77,094	46,43829415	112,5	96,3675	58,04786769
28	Carga28	75	45	38,547	23,21914708	60	51,396	30,95886277	75	64,245	38,69857846
29	Carga29	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
30	Carga30	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
31	Carga31 ^[1]	150	90	77,094	46,43829415	120	102,792	61,91772554	150	128,49	77,39715692
32	Carga32	45	27	23,1282	13,93148825	36	30,8376	18,57531766	45	38,547	23,21914708
33	Carga33	75	45	38,547	23,21914708	60	51,396	30,95886277	75	64,245	38,69857846
34	Carga34	30	18	15,4188	9,287658831	24	20,5584	12,38354511	30	25,698	15,47943138
35	Carga35	300	180	154,188	92,87658831	240	205,584	123,8354511	300	256,98	154,7943138

^[1] – A carga indicada pelo código Carga31 foi calculada, porém não é considerada na simulação uma vez que seu respectivo transformador está desconectado da rede. Para fins de simulação, esta não se faz presente e suas potências são consideradas nula.